
Introduction to Deep Learning
Arnab Maity

NCSU Statistics ~ 5240 SAS Hall ~ amaity[at]ncsu.edu

Contents

Introduction 2

Single Layer Neural Networks 2

Fitting a neural netwrok 4

Gradient descent and backpropagation 4

Stochastic Gradient Descent 4

Regularization 5

Dropout Learning 5

Fitting in R 5

Classification 8

Multilayer Neural Networks 12

Network Tuning 14

Convolutional Neural Networks 18

Convolution Layers 19

Pooling Layers 21

Architecture of a Convolutional Neural Network 22

Recurrent Neural Networks 27

Text data 27

Structure of RNN layer 33

Long Short-Term Memory (LSTM) 35

Bidirectional RNNs 36

Regularization 37

Autoencoders 38

Stacked autoencoders 42

Denoising autoencoders 43

Anomaly detection 44

Other various autoencoders 45

ST 563 introduction to deep learning 2

Introduction

Deep learning is one of the most active area in machine learning
and artificial intelligence communities. It is a specific subfield of
machine learning that is based learning successive layers of increas-
ingly meaningful representations of the data. The “deep” in deep
learning represents the idea of successive layers of representations
of the data – it does not refer to any kind of deeper understanding
of the data achieved by the approach. Modern deep learning models
often involve many (tens or even hundreds) successive layers of rep-
resentations. These layers are trained learned automatically from the
training data. Other approaches to machine learning tend to focus
on learning only one or two layers of representations of the data and
hence they are sometimes called shallow learning.

Figure 1: Structure of a single layer
neural network.

The cornerstone of deep learning is the neural network. Specifically,
the layered representations are modeled using neural networks. The
term neural network has evolved to encompass a large class of mod-
els and learning methods. Essentially, they are nonlinear statistical
models. The simplest form of a neural network, sometimes called the
single hidden layer back-propagation network or single layer perceptron is
a two-stage regression or classification model. Modern neural net-
works, however, have more than one hidden layer, and often many
units per layer. In theory a single hidden layer with a large number
of units has the ability to approximate most functions. However, the
learning task of discovering a good solution is made much easier
with multiple layers each of modest size. We discuss both these types
of networks in the following sections.

Single Layer Neural Networks

A single layer neural network is a two-stage regression or classifi-
cation model, typically represented by a network diagram Figure 1.
Here we only show one output variable Y (as often the case for usual
regression problems), but in general Y can be a vector of output vari-
ables, Y1, . . . , YJ . For example, in a multiclass classification problem,
the output Yj can be coded as dummy variable for the j-th class.

Formally, suppose we have input variables X = (X1, . . . , Xp). The
neural network builds a nonlinear function f (X) to predict the re-
sponse Y. The concept is similar to the models we have discussed
for far (nonlinear regression models such as splines, SVM, trees etc.);
neural networks however use a particular structure to build such
nonlinear models. For example, Figure 1 shows a feed-forward neu-
ral network for modeling one quantitative response Y using p = 4
predictors. The arrows indicate that each of the inputs from the input

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 introduction to deep learning 3

layer feeds into each of the K hidden units in the hidden layer. In this
example, we have K = 5 hidden units, denoted by A1, . . . , A5, also
called activations. The activations are computed as functions of the
input features:

Ak = hk(X) = g(wk0 +
p

∑
j=1

wkjXj),

where g(z) is a nonlinear activation function that is specified in ad-
vance, and wk0, . . . , wkp are parameters to be estimated from the data.
We can think of each Ak as a different transformation hk(X) of the
original features.1 These K activations from the hidden layer then 1 This concept is much like the basis

functions.feed into the output layer using the form

f (X) = β0 +
K

∑
k=1

βk Ak = β0 +
K

∑
k=1

βkhk(X),

where the coefficients β0, . . . , βK are parameters to be estimated from
the data. This is the final form the neural network shown in Figure
1. Note that the hidden layer units are not observed directly, but are
learned during the training of the network. The output layer is a
linear model that uses these activations Ak as inputs, resulting in a
function f (X).

−3 −2 −1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

z

g(
z)

Figure 2: The sigmoid (blue) and ReLU
(orange) activations.

There are a few choices for the activation function such as sigmoid

g(z) =
1

1 + e−z ,

or rectified linear unit (ReLU)

g(z) = zI(z > 0).

In early days, the sigmoid function, which is the same function used
in logistic regression to convert a linear function into probabilities
between zero and one, was favored as activation function. The pre-
ferred choice in modern neural networks is the ReLU function, which
can be computed and stored more efficiently than a sigmoid activa-
tion. Figure 2 shows the two activations. Sometimes Gaussian radial
basis functions are used, producing what is known as a radial basis
function network. There are many other activation functions such as
softmax (used in classification problems), exponential, hyperbolic
tangent, and so on.

−2

0

2

−2 0 2
X1

X
2

level

(−6, −5]

(−5, −4]

(−4, −3]

(−3, −2]

(−2, −1]

(−1, 0]

(0, 1]

(1, 2]

(2, 3]

(3, 4]

(4, 5]

(5, 6]

Figure 3: Example of of f(X) when X =
(X1, X2) and using ReLU activation.

The nonlinearity in the activation function is essential to capture
nonlinear effects of the predictors. If g(z) is linear then the activa-
tions Ak will also be linear, and thus the model f (X) would be a
simple linear model in the predictors. Moreover, having a nonlinear
activation function allows the model to capture complex interaction
effects of the predictors. Figure 3 shows as example of f (X), with
X = (X1, X2), modeled using the ReLU activation.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 introduction to deep learning 4

Fitting a neural netwrok

To fit a neural network to a data set, we need estimate the unknown
parameters wkj, j = 0, . . . , p; k = 1, . . . , K and β0, . . . , βK. For a quanti-
tative response (in a regression problem) we do so by minimizing the
squared error loss

n

∑
i=1

(Yi − f (Xi))
2

with respect to wkj and βk, j = 0, . . . , p; k = 1, . . . , K. A challenge of
this optimization is that the loss above is a nonconvex function of the
parameters and hence there are multiple solutions (i.e., both local and
global minimum exist). Figure 4 shows an one-dimensional example
of such a nonconvex function. This problem is further compounded
for multi-layer networks.

−1.0 −0.5 0.0 0.5 1.0

0
1

2
3

4
5

6

θ

R
(θ

)

θ0 θ1 θ2 θ7

●

●

●

●

R(θ0)
R(θ1)

R(θ2)

R(θ7)

Figure 4: Illustration of gradient de-
scent for one-dimensional problem. The
objective function is not convex, and
has two minima, one at -0.46 (local),
the other at 1.02 (global). Starting at
some randomly chosen value, each step
moves downhill - against the gradient
- until it cannot go down any further.
Here gradient descent reached the
global minimum in 7 steps.

To overcome some of these issues and to protect from overfitting,
two general strategies are employed when fitting neural networks.

• Slow Learning: the model is fit in a somewhat slow iterative fash-
ion, using gradient descent. The fitting process is then stopped
when overfitting is detected.

• Regularization: penalties are imposed on the parameters, usually
lasso or ridge.

Gradient descent and backpropagation

The idea of gradient descent is very simple. We Start with a guess for
all the parameters in the model (typically randomly chosen). Then
we find a small change in the parameter values such that it reduces
the objective. Then we iterate this process until the objective function
fails to decrease. Figure 4 gives an example of the gradient descent
for a one-dimensional problem. Here R(·) denotes the objective, and
θ denotes the parameter. We start from θ0 and gradually reach the
global minimum at θ7. However, depending on the starting point, we
might end up in a local minimum. In general, we can hope to end up
at a good local minimum. The direction to move so as to decrease the
objective is determined by a process known as backpropagation in the
neural network literature. We will not go into mathematical details
here. Interested readers should consult the textbook (Chapter 10.7) or
Chapter 11.4 of Elements of Statistical Learning.

Stochastic Gradient Descent

Gradient descent usually takes many steps to reach a local minimum.
In practice, there are a number of approaches for accelerating the

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 introduction to deep learning 5

process. Also, when n is large, instead of using all the n observations,
we can sample a small fraction or minibatch of them each time we
compute a gradient step. This process is known as stochastic gradient
descent (SGD) and is the state of the art for learning deep neural
networks. In this context, the term epoch refers to the number of
times an equivalent of the full training set has been processed. For
example, if we have a sample size 100 with batch size 20, then each
epoch will have 100/20 = 5 SGD steps.

Regularization

Another approach to avoid overfitting (especially when number of
parameters are very large in multi-layered netwroks) is to augment a
penalty term (e.g., ridge penalty) to the loss function. The penalty pa-
rameter is often preset at a small value, or else it is found using data
splitting methods. We can also use different values of the penalty
parameter for the groups of weights from different layers.

Dropout Learning

Dropout learning is a relatively new and efficient form of regular-
ization, similar in some respects to ridge regularization. Inspired by
random forests, the idea is to randomly remove a fraction of the units
in a layer when fitting the model. This is done separately each time
a training observation is processed. The surviving units stand in for
those missing, and their weights are scaled up to compensate. This
prevents nodes from becoming over-specialized, and can be seen as a
form of regularization. In practice dropout is achieved by randomly
setting the activations for the dropped out units to zero, while keeping
the architecture intact.

Fitting in R

In R, we are going to use keras package to fit neural networks.
See keras.rstudio.com or www.statlearning.com for step-by-step
instructions on how to setup keras. In this example, we will use
Hitters data to demonstrate a single layer neural network.

First, we load the data, and keras library. We explicitly separate
the response and predictors. To create the predictors, we actually
create the model matrix so that any categorical variables will be au-
tomatically converted to the corresponding dummy variable. Finally,
we standardize each predictor, and take a log transformation of the
response. For testing purposes, we also split the data into training
and test sets.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 introduction to deep learning 6

Load keras and Hitters data

library(keras)

Hitters <- na.omit(ISLR2::Hitters)

response y, preditor x

x <- model.matrix(Salary ~ . - 1, data = Hitters) %>%

scale()

y <- log(Hitters$Salary)

training and test sets

set.seed(1001)

n <- nrow(x)

ind <- sample(1:n, round(n*0.3), replace = FALSE)

xtest <- x[ind,]

ytest <- y[ind]

xtrain <- x[-ind,]

ytrain <- y[-ind]

Notice that we have used %>% (pipe) operator here. We can simply
understand this operator as “then”. Specifically, x %>% f() would
read as “take x, and then apply f()”. Thus x %>% f() is equivalent
to f(x). This notation is particularly useful when we chain multi-
ple functions, as we will do when building (adding layers) a neural
network. For example, instead of writing

h(g(f(x)))

it is much easier to write/read

x %>%

f() %>%

g() %>%

h()

Now let us specify the network structure, as shown in the code
chunk below. Here we start with keras_model_sequential() to
specify that the network is a stack of layers. The next command
layer_dense() specifies the first hidden layer (with 64 hidden units
with ReLU activation)2. The input_shape argument specifies the di- 2 See ?activation_relu for available ac-

tivation functions in the keras package.mension of the predictors. Finally, we have the output layer with only
one unit that computes f (X). Notice that we do not need to specify
the input layer – we just need to use the input_shape argument in
the first layer. Also the output layer has no activation function, in-
dicating that the model provides a single quantitative output, as is.
Optionally, we can use the command layer_dropout(), commented

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 introduction to deep learning 7

out in the code below, to specify the parameters for dropout learning.
Specifically, a randomly chosen 40% of the 64 activations from the
previous layer are set to zero during each iteration of the stochastic
gradient descent algorithm. This step may protect against overfitting.

network <- keras_model_sequential() %>%

layer_dense(units = 64, activation = "relu",

input_shape = ncol(x)) %>%

#layer_dropout(rate = 0.4) %>%

layer_dense(units = 1)

network

Model

Model: "sequential_1"

__

Layer (type) Output Shape Param

==

dense_3 (Dense) (None, 64) 1344

__

dense_2 (Dense) (None, 1) 65

==

Total params: 1,409

Trainable params: 1,409

Non-trainable params: 0

__

The network above is just the structure – it does not have access to
the actual data (x and y) yet. We see that there are 1, 409 parameters.
The output layer has 65 parameters since we have 64 activation units
and one intercept.3 The hidden layer has 1,344 parameters because 3 Recall f (X) = β0 + ∑K

k=1 βk Ak . Here
K = 64.each activation has p + 1 parameters. Here p = 20. Thus we have, for

64 activations, 64 ∗ 21 = 1344 parameters.
Next, we need to compile the network. In this step, we need to

specify a loss function to measure its performance on the training
data, an optimizer through which the network will update itself, and
metrics to monitor during training and testing. Here we have used the
squared error loss (mse), with the “RMSprop” (Root Mean Squared
Propagation)4 optimizer, and mean absolute error as our metric. 4 An adaptive gradient-based optimiza-

tion technique.

network %>% compile(loss = "mean_squared_error",

optimizer = optimizer_rmsprop(),

metrics = list("mean_absolute_error"))

Note that we are not assigning the result of the compilation to a

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 introduction to deep learning 8

new variable. Instead, the compile() function modifies the existing
network in place.

Finally, we are ready to train the network using the data set at
hand. We do so by calling the fit() function.

history <- network %>% fit(xtrain, ytrain,

epochs = 200, batch_size = 32,

validation_data = list(xtest, ytest))

lo
ss

m
ea

n_
ab

so
lu

te
_e

rr
or

0 50 100 150 200

0

10

20

30

0

2

4

epoch

data

training

validation

Figure 5: Training abd test set metrics
over epochs.

Here we supply the training data and two fitting parameters, epochs
and batch_size. Here batch size of 32 means that at each step of
SGD, the algorithm randomly selects 32 training observations for the
computation of the gradient. Here an epoch amounts to the number
of SGD steps required to process all training observations. Since we
have 184 training observations, and we set batch size of 32, an epoch
is 184/32 ≈ 5.8 SGD steps. The argument validation_data specifies
the data to be used as validation. The model will set apart this data,
will not train on it, and will evaluate the loss and any model metrics
on this data at the end of each epoch. The output history stores the
evaluation metrics for the training as well as test sets. Figure 5 shows
training and validation metrics over epochs.

Thus we have trained a single layer neural network model. It is
worth noting that if you run the fit() command a second time in
the same R session, then the fitting process will pick up where it left
off. Now we can use the predict command as usual to get predictions
for new data. Figure 6 shows the predicted values against observed
response in the test set.

pred <- predict(network, xtest)

MSE <- mean((ytest - pred)ˆ2)

abs_err <- mean(abs(ytest - pred))

c(MSE = MSE, MAE = abs_err)

MSE MAE

0.3527897 0.4151273

4.5 5.0 5.5 6.0 6.5 7.0 7.5

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

7.
5

Test set observed response

P
re

di
ct

ed
 v

al
ue

s

Figure 6: Prediction of the test set using
a single layer neural network model.

Classification

So far we have discussed regression problems. For a classification
problem with J classes, our output variable variables can be Yij, a
binary variable taking the value 1 if the i-th item in the sample is in
the j-th class, 0 otherwise. Thus in the output layer, instead of having
one function f (X), we will have J such functions f j(X), j = 1, . . . , J.
However we need to keep in mind that the output functions f j(X)

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 introduction to deep learning 9

are not guaranteed to be probabilities as they can take any value.
Even if use sigmoid activations to restrict their values between 0

and 1, they might not sum to 1. Thus, a further activation is often
used in the output layer to convert them to probability like quantities
(non-negative and add up to 1). Thus, rather than setting f j(X) to be
simply β0j + ∑K

k=1 βkj Ak, we set

f j(X) = gj(T1, . . . , TJ),

with Tj = β0j + ∑K
k=1 βkj Ak, where gj(·) are pre-specified activation

functions.ˆWe can think the regression problem as a special case of
this formulation with gj(·) being the identity function.] Typically, we
use the softmax5 acivation here: 5 Recall our discussion about softmax in

multinomial logistic regression.

gj(T1, . . . , TJ) =
eTj

eT1 + . . . + eTJ
.

With the setup above, in a classification problem, we can minimize
either squared error loss or cross-entropy

−
n

∑
i=1

J

∑
j=1

Yij log(f j(Xi))

The corresponding classifier assigns a new unit to class j is f j for the
new unit is largest.6 6 With the softmax activation function

and the cross-entropy error function,
the neural network model is exactly
a linear logistic regression model in
the hidden units, and all the param-
eters can be estimated by maximum
likelihood.

Let us consider the MNIST image data set available in keras. The
data set consists of images of handwritten digits (0 – 9), and the
corresponding labels. Let us use a single layer neural network to
build a classifier. The data already contains training set of 60, 000
images and test set of 10, 000 images.

First, we load the training and test sets.

Load train/test sets fo MNIST data

mnist <- dataset_mnist()

str(mnist)

List of 2

$ train:List of 2

..$ x: int [1:60000, 1:28, 1:28] 0 0 0 0 0 0 0 0 0 0 ...

..$ y: int [1:60000(1d)] 5 0 4 1 9 2 1 3 1 4 ...

$ test :List of 2

..$ x: int [1:10000, 1:28, 1:28] 0 0 0 0 0 0 0 0 0 0 ...

..$ y: int [1:10000(1d)] 7 2 1 0 4 1 4 9 5 9 ...

As we see above, we have 28× 28 images stored as a three-dimensional
array, so we need to reshape them into a matrix. Each image has val-
ues between 0 to 255. We will also scale them to be between 0 and 1.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 introduction to deep learning 10

Finally, we will create indicator variables for each class label. There
are 10 possible classes (0 – 9), and thus we will have 10 such indica-
tors.

set.seed(1001)

Prep training set

train_images <- mnist$train$x %>%

array_reshape(c(60000, 28 * 28))

train_images <- train_images / 255

train_labels <- mnist$train$y %>%

to_categorical(10)

Prep test set

test_images <- mnist$test$x %>%

array_reshape(c(10000, 28 * 28))

test_images <- test_images / 255

test_labels <- mnist$test$y %>%

to_categorical(10)

Now we build our neural network just as before. The only change
is the output layer – it now has 10 units (one for each class), and
a softmax activation. In the compilation step, the changes are the
loss function (cross-entropy) and metric (accuracy). In the training
phase, we specify a validation split of 20%, so the training is actually
performed on 80% of the 60,000 observations in the training set. This
is an alternative to actually supplying validation data.

set up netwrok

network <- keras_model_sequential() %>%

layer_dense(units = 512, activation = "relu",

input_shape = c(28*28)) %>%

layer_dense(units = 10, activation = "softmax")

network

Model

Model: "sequential"

__

Layer (type) Output Shape Param

==

dense_1 (Dense) (None, 512) 401920

__

dense (Dense) (None, 10) 5130

==

Total params: 407,050

Trainable params: 407,050

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 introduction to deep learning 11

Non-trainable params: 0

__

compile network

network %>% compile(

optimizer = optimizer_rmsprop(),

loss = "categorical_crossentropy",

metrics = c("accuracy")

)

training

history <- network %>%

fit(train_images, train_labels,

epochs = 15, batch_size = 128,

validation_split = 0.2)

plot(history, smooth = FALSE, theme_bw = TRUE)

lo
ss

ac
cu

ra
cy

5 10 15

0.0

0.1

0.2

0.92

0.94

0.96

0.98

1.00

epoch

data

training

validation

Figure 7: Training and validation
metrics for the MNIST image data.

We predict the classes of the test set and compute the test accuracy
(and other statistics) as follows.

pred <- predict_classes(network, test_images)

conf <- caret::confusionMatrix(data = as.factor(pred),

reference = as.factor(mnist$test$y))

conf$overall

Accuracy Kappa AccuracyLower AccuracyUpper AccuracyNull

0.9818000 0.9797696 0.9789852 0.9843289 0.1135000

AccuracyPValue McnemarPValue

0.0000000 NaN

It is worth noting that we can also employ multinomial logit re-
gression easily using keras. We simply need to omit the hidden layer,
and just keep the output layer with softmax activation.

set.seed(1001)

Multinomial logit regression

mlogit <- keras_model_sequential() %>%

layer_dense(input_shape = 28*28,

units = 10, activation = "softmax")

mlogit

Model

Model: "sequential_1"

__

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 introduction to deep learning 12

Layer (type) Output Shape Param

==

dense_2 (Dense) (None, 10) 7850

==

Total params: 7,850

Trainable params: 7,850

Non-trainable params: 0

__

compile network

mlogit %>% compile(

optimizer = optimizer_rmsprop(),

loss = "categorical_crossentropy",

metrics = c("accuracy")

)

training

history <- mlogit %>%

fit(train_images, train_labels,

epochs = 15, batch_size = 128,

validation_split = 0.2)

prediction

pred <- predict_classes(mlogit, test_images)

conf <- caret::confusionMatrix(data = as.factor(pred),

reference = as.factor(mnist$test$y))

conf$overall

Accuracy Kappa AccuracyLower AccuracyUpper AccuracyNull

0.9282000 0.9201904 0.9229644 0.9331845 0.1135000

AccuracyPValue McnemarPValue

0.0000000 NaN

Multilayer Neural Networks

In most practical problems, we often use multiple hidden layers. In
theory a single hidden layer with a large number of units should be
able to approximate most functions. However, the learning task of
discovering a good solution is made much easier with multiple layers
each of modest size. Figure 8 shows an example of a neural network
with two hidden layers (and multiple output variables).

Figure 8: Example of a neural network
with two hidden layers.

In context of Figure 8, the first hidden layer has the form

A(1)
k = h(1)k (X) = g(w(1)

k0 +
p

∑
j=1

w(1)
kj Xj),

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 introduction to deep learning 13

for k = 1, . . . , K1. The second hidden layer uses the activations of the
first hidden layer as inputs, and computes new activations

A(2)
` = h(2)` (X) = g(w(2)

`0 +
K1

∑
k=1

w(2)
`k A(1)

k),

for ` = 1, . . . , K2. Thus, through a chain of transformations, the
network is able to build up fairly complex transformations of the
original predictors X that ultimately feed into the output layer as
features.7 In terms of notation, the symbol W1 in Figure 8 represents 7 In machine learning literature, it is

common to use weights and bias in place
of slope and intercept.

the entire matrix of weights that feed from the input layer to the first
hidden layer. This matrix will have (p + 1)× K1 elements. Similarly,
W2 represents the (K1 + 1)× K2 matrix of weights that feed from the
first hidden layer to the second hidden layer. Finally, the matrix B is
made of the weights that feed from the second hidden layer to the
output layer.

In general, we can have many hidden layers, resulting in a large
number of parameters. Dropout based regularization or L1/L2 regu-
larizatoin might be preffred in this case to avoid overfitting the traiig
data.

Let us now revisit the MNIST data example, but using a neu-
ral network with two hidden layers instead of one. The following
code does so – the only change from the previous code is the extra
layer_dense call with 256 units in building the network, and the two
dropout layers for regularization.8 8 Try the network without the dropout

layers to compare performance.

set.seed(1001)

set up network

network <- keras_model_sequential() %>%

layer_dense(units = 512, activation = "relu",

input_shape = c(28*28)) %>%

layer_dropout(rate = 0.4) %>%

layer_dense(units = 256, activation = "relu") %>%

layer_dropout(rate = 0.2) %>%

layer_dense(units = 10, activation = "softmax")

network

Model

Model: "sequential_3"

__

Layer (type) Output Shape Param

==

dense_8 (Dense) (None, 512) 401920

__

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 introduction to deep learning 14

dropout_3 (Dropout) (None, 512) 0

__

dense_7 (Dense) (None, 256) 131328

__

dropout_2 (Dropout) (None, 256) 0

__

dense_6 (Dense) (None, 10) 2570

==

Total params: 535,818

Trainable params: 535,818

Non-trainable params: 0

__

compile network

network %>% compile(

optimizer = optimizer_rmsprop(),

loss = "categorical_crossentropy",

metrics = c("accuracy")

)

training

history <- network %>%

fit(train_images, train_labels,

epochs = 15, batch_size = 128,

validation_split = 0.2)

plot(history, smooth = FALSE, theme_bw = TRUE)

lo
ss

ac
cu

ra
cy

5 10 15

0.1

0.2

0.3

0.900

0.925

0.950

0.975

epoch

data

training

validation

Figure 9: Training and validation
metrics for the MNIST image data.

Prediction

pred <- predict_classes(network, test_images)

conf <- caret::confusionMatrix(data = as.factor(pred),

reference = as.factor(mnist$test$y))

conf$overall

Accuracy Kappa AccuracyLower AccuracyUpper AccuracyNull

0.9825000 0.9805478 0.9797349 0.9849787 0.1135000

AccuracyPValue McnemarPValue

0.0000000 NaN

Network Tuning

The network in Figure 8 is considered to be relatively straightfor-
ward. We still require to make a number of choices that all have an
effect on the performance:

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 introduction to deep learning 15

• The number of hidden layers, and the number of units per layer.
Modern thinking is that the number of units per hidden layer can
be large, and overfitting can be controlled via the various forms of
regularization.

• Regularization tuning parameters. These include the dropout
rate, and the strength of lasso and ridge regularization, and are
typically set separately at each layer.

• Details of stochastic gradient descent. These includes the batch
size and the number of epochs.

In preparing this MNIST example, we achieved a respectable 1.8%
misclassification error. The tinkering process can be tedious, and can
result in overfitting if done carelessly.

In practice, we may need to train several thousands of models be-
fore we choose one final model. For example, consider the MNIST
example above where we consider three sizes, (64, 128, 256), and
dropout rates, (0.2, 0.3, 0.4), for each of the two layers. Also, we in-
tend to investigate two learning rates, (0.1, 0.05), and two optimizers,
rmsprop and adam. In total, this leads to 32 ∗ 32 ∗ 2 ∗ 2 = 324 training
runs. If we had another layer (i.e., a tree layer network), the number
of training runs would be 33 ∗ 332 ∗ 2 = 2916. Manually fitting this
many models is impractical (and often not feasible). Instead we can
use grid search. For most implementations we need to predetermine
the number of layers we want and then establish a search grid. We
can use h2o’s h2o.deeplearning() function, for example, to create
and execute the grid search. In what follows, we will demonstrate an-
other R package tfruns to monitor several training runs with keras.

For keras, we use flags to control search grids – this implementa-
tion provides added flexibility for tracking, visualizing, and manag-
ing training runs with the tfruns package.9 9 Allaire, JJ. (2018). Tfruns: Training

Run Tools for ’Tensorflow’. https://
CRAN.R-project.org/package=tfruns.
For a full discussion regarding flags see
the https://tensorflow.rstudio.com/

tools/ online resource.

First, we need to set up a training script. The following code is
saved in the file mnistnn.R. Notice that we have defined the learning
parameters in the variable train_flags using the flags() function.
Then when we build/train the model, we simply refer to appropriate
fields of train_flags instead to explicitly specifying numeric values.

Load keras

library(keras)

Prep data

mnist <- dataset_mnist()

Prep training set

train_images <- mnist$train$x %>%

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

https://CRAN.R-project.org/package=tfruns
https://CRAN.R-project.org/package=tfruns
https://tensorflow.rstudio.com/tools/
https://tensorflow.rstudio.com/tools/

ST 563 introduction to deep learning 16

array_reshape(c(60000, 28 * 28))

train_images <- train_images / 255

train_labels <- mnist$train$y %>%

to_categorical(10)

Prep test set

test_images <- mnist$test$x %>%

array_reshape(c(10000, 28 * 28))

test_images <- test_images / 255

test_labels <- mnist$test$y %>%

to_categorical(10)

Flags for training

train_flags <- flags(

Nodes

flag_numeric("nodes1", 256),

flag_numeric("nodes2", 128),

Dropout

flag_numeric("dropout1", 0.4),

flag_numeric("dropout2", 0.3),

Learning paramaters

flag_string("optimizer", "rmsprop"),

flag_numeric("lr_annealing", 0.1)

)

Build and fit the model

model <- keras_model_sequential() %>%

layer_dense(units = train_flags$nodes1,

activation = "relu",

input_shape = ncol(train_images)) %>%

layer_dropout(rate = train_flags$dropout1) %>%

layer_dense(units = train_flags$nodes2,

activation = "relu") %>%

layer_dropout(rate = train_flags$dropout2) %>%

layer_dense(units = 10,

activation = "softmax") %>%

compile(loss = 'categorical_crossentropy',

metrics = c('accuracy'),

optimizer = train_flags$optimizer

) %>%

fit(x = train_images,

y = train_labels,

epochs = 35,

batch_size = 128,

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 introduction to deep learning 17

validation_split = 0.2,

callbacks = list(

callback_early_stopping(patience = 5),

callback_reduce_lr_on_plateau(factor = train_flags$lr_annealing)

),

verbose = FALSE

)

Next, we execute the grid search by using tfruns::tuning_run().
The following code block does so.

library(tfruns)

runs <- tuning_run("mnistnn.R",

runs_dir = "runs"

flags = list(

nodes1 = c(64, 128, 256),

nodes2 = c(64, 128, 256),

dropout1 = c(0.2, 0.3, 0.4),

dropout2 = c(0.2, 0.3, 0.4),

optimizer = c("rmsprop", "adam"),

lr_annealing = c(0.1, 0.05)

),

sample = 0.05

)

Note that the flags argument gives all the possible values we want
to investigate for each node (node sizes and dropout) and overall
network (optimizer and learning rate). Also the sample argument
specifies how many models are actually evaluated. In our case, we
have a total 324 possible training runs. Instead of running all of them
(you may run all of them if you wish), we randomly choose 5% of these
models (17 models), and run those. We choose the best among these
models. While this is not necessary for our rather small network,
such a strategy is quite helpful for larger networks where the total
number of training runs are simply too large to evaluate all. The
argument runs_dir = "mnist_tuning" specifies which directory (in
the working directory) is used to save the results from the runs.

Once the runs are complete, we can view the best result as follows.

min validation loss

ind <- which.min(runs$metric_val_loss)

runs[ind,]

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 introduction to deep learning 18

cat('

$ run_dir : chr "runs/2021-11-15T20-12-35Z"

$ metric_loss : num 0.0288

$ metric_accuracy : num 0.99

$ metric_val_loss : num 0.0791

$ metric_val_accuracy: num 0.98

$ metric_lr : num 0.001

$ flag_nodes1 : int 256

$ flag_nodes2 : int 128

$ flag_dropout1 : num 0.2

$ flag_dropout2 : num 0.3

$ flag_optimizer : chr "adam"

$ flag_lr_annealing : num 0.1

$ epochs : int 35

$ epochs_completed : int 14

$ metrics : chr "(metrics data frame)"

$ model : chr "(model summary)"

$ loss_function : chr "categorical_crossentropy"

$ optimizer : chr "<tensorflow.python.keras.optimizer_v2.adam.Adam>"

$ learning_rate : num 0.001

$ script : chr "mnistnn.R"

$ start : POSIXct[1:1], format: "2021-11-15 20:12:42"

$ end : POSIXct[1:1], format: "2021-11-15 20:13:20"

$ completed : logi TRUE

$ output : chr "(script ouptut)"

$ source_code : chr "(source archive)"

$ context : chr "local"

$ type : chr "training"

')

The optimal model has a validation loss of 0.0791 and validation
accuracy rate of 0.98 and the hyperparameter settings for this optimal
model are shown above as well.

Convolutional Neural Networks

Now let us discuss a specific type of neural network called convolu-
tional neural networks (CNN), also known as convnets. This type of
models are almost universally used in computer vision applications,
such as image classification.

The neural network models we have discussed so far essentially
use global features of the input data to perform classification tasks.
in contrast, convnets mimic to some degree how humans classify
images, by recognizing specific features or patterns anywhere in the im-

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 introduction to deep learning 19

age that distinguish each particular object class. The network first
identifies low-level features in the input image, such as small edges,
patches of color etc. These low-level features are then combined to
form higher-level features. Eventually, the presence or absence of
these higher-level features contributes to the probability of any given
output class.

Let us revisit the MNIST digits data. Dense layers learn global
patterns in their input feature space - for an MNIST digit, patterns
involving all pixels are used. Convnets, on the other hand, learn
local patterns: in the case of images, patterns found in small two-
dimensional windows of the inputs. Figure 10 shows an example
of such local windows on a MNIST image. Operationally, CNNs
combine two specialized types of hidden layers, called convolution
layers and pooling layers. Convolution layers search for instances of
small patterns in the image, whereas pooling layers downsample
these to select a prominent subset. In order to achieve state-of-the-
art results, contemporary neural network architectures make use of
many convolution and pooling layers.

Figure 10: Examples for 3x3 windows
of a MNIST image.

There are two key characteristics of convnets:

1. The patterns they learn are translation invariant. After learning a
certain pattern in any part of an image, a convnet can recognize it
anywhere. In contrast, a densely connected network would have
to learn the pattern again if it appeared at a new location. This
makes convnets efficient when processing images as they need
fewer training samples to learn useful data representations.

2. They can learn spatial hierarchies of patterns. (see figure 5.2) first
convolution layer will learn small local patterns such as edges, a
second convolution layer will learn larger patterns made of the
features of the first layers, and so on. This allows convnets to
efficiently learn increasingly complex and abstract visual concepts.

Let us discuss the details of the two layers below.

Convolution Layers

A convolution layer is made up of a large number of convolution fil-
ters, each of which is a template that determines whether a particular
local feature is present in an image. A convolution filter relies on
the convolution operation, which basically amounts to repeatedly
multiplying matrix elements and then adding the results.

In our MNIST example, the input image is of dimension 28 ×
28× 1. The first two dimensions are height and width (spatial axes)
and the last dimension is depth or channel axis. In MNIST image
example, the images are in grayscale and thus we only have one

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 introduction to deep learning 20

channel. If we have an color image in RGB format, we will have three
channels: red, green, and blue (the last dimension will be three). In
general, we can think of an image as a three-dimensional array. Con-
volutions operate over such 3D arrays.10 The convolution operation 10 These are also called feature maps.

extracts windows from its input image and applies the same trans-
formation to all of these windows, producing an output feature map.
This same procedure is then done for each possible windows (of the
same size), and the resulting outputs are combined. A simple exam-
ple of convolution is shown below, where we have a 4× 3 image and
a 2× 2 filter.

Input image:

a b c
d e f
g h i
j k `

4×3

Convolution filter:

[
α β

γ δ

]
2×2

Convolved image:

aα + bβ + dγ + eδ bα + cβ + eγ + f δ

· ·
· ·

3×2

Note that the top-left element of the convolved image is computed
by multiplying each element in the 2× 2 filter by the corresponding
element in the top left 2× 2 window of the image, and then adding
the results. The other elements are obtained similarly as the convolu-
tion filter is applied to every 2× 2 submatrix of the original image in
order to obtain the convolved image. It turns out that that if a 2× 2
submatrix of the original image resembles the convolution filter, then
it will have a large value in the convolved image; otherwise, it will
have a small value. Thus, the convolved image highlights regions of
the original image that resemble the convolution filter.11 11 In general convolution filters are

small `1 × `2 arrays, where `1 and `2
are small positive integers that are
not necessarily equal. Filters encode
specific aspects of the input data: at a
high level, a single filter could encode
the concept “presence of a face in the
input,” for instance.

If the input image is in color, a single convolution filter will also
have three channels, one per color, each of dimension 2 × 2, with
potentially different filter weights. The results of the three convolu-
tions are summed to form a two-dimensional output feature map.
Note that at this point the color information has been used, and is
not passed on to subsequent layers except through its role in the
convolution.

Also, in a convolution layer, we use a whole bank of filters to pick
out a variety of differently-oriented edges and shapes in the image.
Using predefined filters in this way is standard practice in image
processing. with CNNs the filters are learned for the specific classifi-
cation task.

In the MNIST example, suppose we set a convolution layer with
a bank of 32 filters, each of size 3× 3. In practice, we often use the

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 introduction to deep learning 21

relu activation in such a layer. This convolution layer takes a feature
map of size (28, 28, 1) and outputs a feature map of size (26, 26, 32): it
computes 32 filters over its input.12 Each of these 32 output channels 12 The resulting images are 26 × 26

instead of 28× 28 since we can place
at most 26 filters of size 3times3 on the
input image.

contains a 26 × 26 grid of values, which is a response map of the
filter over the input, indicating the response of that filter pattern at
different locations in the input. That is what the term feature map
means: every dimension in the depth axis is a feature (or filter), and
the 2D array output is the 2D spatial map of the response of this filter
over the input.

Figure 11: Examples of 3x3 filters.
Colors are only proportional to the
corresponding values - they are not
between 0 and 1.

Figure 11 shows examples of 9 filters applied to the MNIST data.
Figure 12 shows the resulting feature maps after applying each of
the filters to the original image in Figure 10. As we can see, different
filters are able to capture different features of the same image.

Figure 12: Convolved images using
the filters in the previous figure. The
original image is displayed in Figure 10.

Pooling Layers

A pooling layer provides a way to condense a large image into a
smaller summary image. While there are a number of possible ways
to perform pooling, the max pooling operation summarizes each non-
overlapping 2 × 2 block of pixels in an image using the maximum
value in the block. This reduces the size of the image by a factor of
two in each direction, and it also provides some location invariance,
that is, as long as there is a large value in one of the four pixels in
the block, the whole block registers as a large value in the reduced
image. We show a simple example of max pooling below:

Max pool

1 2 5 3
3 0 1 2
2 2 3 4
1 1 2 0

4×4

→
[

3 5
2 4

]
2×2

.

In the MNIST example, since the first convolution layer outputs

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 introduction to deep learning 22

images of size 26× 26, the pooling layer will downsize the images to
13× 13. Figure 13 shows results of pooling.

Figure 13: Images after pooling from
the previous figure. The original image
is displayed in Figure 10.

Architecture of a Convolutional Neural Network

In a single convolution layer, each filter produces a new two-dimensional
feature map. The number of convolution filters in a convolution layer
is akin to the number of units at a particular hidden layer in a fully-
connected neural network we discussed in previous sections. This
number also defines the number of channels in the resulting three-
dimensional feature map. Then a pooling layer reduces the first two
dimensions of each three-dimensional feature map. Deep convnets
have many such layers.

Let us inspect a CNN for the MNIST data using R. In keras, the
convolutional and max pooling layers are specified by layer_conv_2d()

and layer_max_pooling_2d() functions.

library(keras)

set.seed(1001)

mnist_convnet <- keras_model_sequential() %>%

layer_conv_2d(filters = 32, kernel_size = c(3, 3),

activation = "relu",

input_shape = c(28, 28, 1))%>%

layer_max_pooling_2d(pool_size = c(2, 2)) %>%

layer_conv_2d(filters = 64, kernel_size = c(3, 3),

activation = "relu") %>%

layer_max_pooling_2d(pool_size = c(2, 2)) %>%

layer_conv_2d(filters = 64, kernel_size = c(3, 3),

activation = "relu") %>%

layer_flatten() %>%

layer_dense(units = 512, activation = "relu",

input_shape = c(28*28)) %>%

layer_dropout(rate = 0.4) %>%

layer_dense(units = 256, activation = "relu") %>%

layer_dropout(rate = 0.2) %>%

layer_dense(units = 10, activation = "softmax")

The input here is a 28× 28× 1 image specified by the input_shape

argument in the first convolution layer. This convolution layer uses

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 introduction to deep learning 23

32 filters, each of size 3× 3 specified by the argument kernel_size.
Also this layer uses a relu activation. The output of this layer is a 3D
array of size 26× 26× 32 since we can only place 26 such filters on
the input image.

The next layer is an pooling layer using non-overlapping 2 × 2
window, specified by pool_size argument. The output of this layer is
a 3D array of size 13× 13× 32, since pooling reduces the width and
height by a fcator of 2.

The next two layers are another convolution layer followed by
pooling. The convolution layer uses 64 filters, giving an output of
size 11× 11× 64, and thus the output of the pooling layer is of size
5× 5× 64.

The final convolution layer has 64 filter, giving output of size 3×
3× 64. At this point we do not pool or convolve the images anymore,
and this final output of this layer is supplied as input to the standard
classification neural net that we discussed in the previous section.
To do so, we need to vectorize the entire 3× 3× 64 array to a vector
of length 576. This is done by the flattening layer using the function
layer_flatten().

mnist_convnet

Model

Model: "sequential_5"

__

Layer (type) Output Shape Param

==

conv2d_15 (Conv2D) (None, 26, 26, 32) 320

__

max_pooling2d_9 (MaxPooling2D) (None, 13, 13, 32) 0

__

conv2d_14 (Conv2D) (None, 11, 11, 64) 18496

__

max_pooling2d_8 (MaxPooling2D) (None, 5, 5, 64) 0

__

conv2d_13 (Conv2D) (None, 3, 3, 64) 36928

__

flatten_4 (Flatten) (None, 576) 0

__

dense_13 (Dense) (None, 512) 295424

__

dropout_7 (Dropout) (None, 512) 0

__

dense_12 (Dense) (None, 256) 131328

__

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 introduction to deep learning 24

dropout_6 (Dropout) (None, 256) 0

__

dense_11 (Dense) (None, 10) 2570

==

Total params: 485,066

Trainable params: 485,066

Non-trainable params: 0

__

Now we proceed as usual: prepare the training and test data sets,
compile the network, and fit the data.

Prepare the data

mnist <- dataset_mnist()

train_images <- mnist$train$x %>%

array_reshape(c(60000, 28, 28, 1))

train_images <- train_images / 255

test_images <- mnist$test$x %>%

array_reshape(c(10000, 28, 28, 1))

test_images <- test_images / 255

train_labels <- mnist$train$y %>%

to_categorical(10)

test_labels <- mnist$test$y %>%

to_categorical(10)

Compile and train

mnist_convnet %>% compile(

optimizer = "rmsprop",

loss = "categorical_crossentropy",

metrics = c("accuracy")

)

history <- mnist_convnet %>%

fit(train_images, train_labels,

epochs = 15, batch_size = 128,

validation_split = 0.2)

The test accuracy is shows below. As we see the accuracy is over
99%. Thus CNN has increased the accuracy of the test set classifica-
tion over the standard neural net in the previous section.

pred <- predict_classes(mnist_convnet, test_images)

conf <- caret::confusionMatrix(data = as.factor(pred),

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 introduction to deep learning 25

reference = as.factor(mnist$test$y))

conf$overall

Accuracy Kappa AccuracyLower AccuracyUpper AccuracyNull

0.9905000 0.9894402 0.9883990 0.9923073 0.1135000

AccuracyPValue McnemarPValue

0.0000000 NaN

There are few points worth considering.

• Each convolve layer takes as input the input feature map from the
previous layer and treats it like a single multi-channel image. Each
convolution filter learned has as many channels as this feature
map.

• Since the channel feature maps are reduced in size after each pool
layer, we usually increase the number of filters in the next con-
volve layer to compensate.

• Sometimes we repeat several convolve layers before a pool layer.
This effectively increases the dimension of the filter.

• There are many tuning parameters to be selected in constructing
such a network, apart from the number, nature, and sizes of each
layer. Dropout learning can be used at each layer, as well as lasso
or ridge regularization.

Figure 14: Data augmentation. The
original image (leftmost) is distorted
in natural ways to produce different
images with the same class label. These
distortions do not fool humans, and act
as a form of regularization when fitting
the CNN. Image and caption taken
from textbook.

• An additional important trick used with image modeling is data
augmentation. Essentially, each training image is replicated many
times, with each replicate randomly distorted in a natural way
such that human recognition is unaffected. Typical distortions are
zoom, horizontal and vertical shift, shear, small rotations, and in
this case horizontal flips. At face value this is a way of increasing
the training set considerably with somewhat different examples,
and thus protects against overfitting. In fact we can see this as a
form of regularization: we build a cloud of images around each

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 introduction to deep learning 26

original image, all with the same label. This kind of fattening of
the data is similar in spirit to ridge regularization.

• We saw that the width and height of the output of a convolution
layer is smaller than the original image. For example, a 28 × 28
input image will be reduced to 26 × 26 is we use a 3 × 3 filter.
If we want to get an output feature map with the same width
and height as the input, padding can be used. Padding consists of
adding an appropriate number of rows and columns on each side
of the input feature map to make it possible to fit center convo-
lution windows around every input tile. For a 3× 3 window, we
add one column on the right, one column on the left, one row at
the top, and one row at the bottom. For a 5× 5 window, we add
two rows/columns and so on. In layer_conv_2d(), padding is
configurable via the padding argument, which takes two values:
“valid”, which means no padding; and “same”, which ensures that
the output has the the same width and height as the input. The
default is no padding.

• We use the pooling layer to downsample the outputs from the con-
volution layers. What happens if we do not use any pooling layer?
In our example, if we omit all the pooling layer, the output of the
third and final convolution layer is of shape 22× 22× 64. Flatten-
ing and feeding this input to a dense layer of size 512 results in
roughly 15.8 million parameters! This is far too large for such a
small model and would result in intense overfitting. In addition,
just having three convolution layer is not effective in learning a
spatial hierarchy of features. The 3× 3 windows in the third con-
volution layer will only contain information coming from 7 × 7
windows in the initial input. The high-level patterns learned by
the convnet will still be very small with regard to the initial input,
which may not be enough to learn to classify digits. In our exam-
ple, it is same as recognizing a digit by only looking at it through
windows that are 7 × 7 pixels. We need the features from the last
convolution layer to contain information about the (almost) totality
of the input. For these two reasons, adding pooling layers are very
important. In short, the reason to use downsampling is to reduce
the number of feature-map coefficients to process, as well as to
induce spatial-filter hierarchies by making successive convolution
layers look at increasingly large windows (in terms of the fraction
of the original input they cover).

The textbook gives an example of application of a industry-level pre-
trained classifier resnet50 to predict the class of some new images.
The keras package has multiple such pre-trained models such as

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 introduction to deep learning 27

vgg16, vgg19 etc. Much of the work in fitting a CNN is in learning
the convolution filters at the hidden layers – these are the coefficients
of a CNN. The output of these filters can serve as features for general
natural-image classification problems. One can use these pretrained
hidden layers for new problems with much smaller training sets. This
process is referred to as weight freezing. Thus we can just train the last
few layers of the network, which requires much less data. Such ex-
amples (and much more) can be found in the documentation of keras
(https://keras.rstudio.com/index.html).

Recurrent Neural Networks

Now we explore deep-learning models that can process sequence
data such as text13 and time-series. The two fundamental deep- 13 Viewed as sequences of words or

sequences of characterslearning algorithms for sequence processing are recurrent neural
networks (RNN) and 1D convnets. In this section, we discuss RNNs.

Text data

Let us start with a concrete example: the IMDB dataset. The dataset
contains 50,000 highly polarized reviews from the Internet Movie
Database. They’re split into 25,000 reviews for training and 25,000

reviews for testing, each set consisting of 50% negative and 50%
positive reviews. The response in this case is the sentiment of the
review, which will be positive or negative. The data set is available
in the keras library using the function dataset_imdb(). Reviews
have been preprocessed, and each review is encoded as a sequence
of word indexes (integers). For convenience, words are indexed by
overall frequency in the dataset, so that for instance the integer “3”
encodes the 3rd most frequent word in the data. Examples of positive
and negative reviews are shown below (truncated to save space):

A positive review

? this film was just brilliant casting location scenery story direction
everyone’s really suited the part they played and you could just imag-
ine being there robert ? is an amazing actor and now the same being
director ? father came from the same scottish island . . .

A negative review

? this has to be one of the worst films of the 1990s when my friends i
were watching this film being the target audience it was aimed at we
just sat watched the first half an hour with our jaws touching the floor
at how bad it really was the rest of the time everyone else in the theatre
just started talking to each other leaving or generally crying into their
popcorn . . .

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

https://keras.rstudio.com/index.html

ST 563 introduction to deep learning 28

Each review can be a different length, include slang or non-words,
have spelling errors, and missing words (denoted by ?) etc. Deep-
learning models do not take raw text as input – they only work with
numeric data. We first need to vectorize text data: it is the process
of transforming text into numeric data. There are multiple ways to do
so:

• We can segment text into words, and then transform each word
into a numeric vector. For example, we can score each document
for the presence or absence of each of the words in a language
dictionary – in this case an English dictionary. If the dictionary
contains M words, that means for each document we create a
binary feature vector of length M, and score a 1 for every word
present, and 0 otherwise. This is called a bag-of-words model.

• Extract n-grams (overlapping groups of multiple consecutive
words) of words or characters, and transform each n-gram into
a vector. For example, a bag of 2-grams records the consecutive
co-occurrence of every distinct pair of words. “Blissfully long” can
be seen as a positive phrase in a movie review, while “blissfully
short” a negative.

• The two approaches above can be applied to characters instead of
words as well.

The process of breaking a text into small units (characters, words,
n-grams) is called tokenization, and the units are called tokens. All
text-vectorization processes consist of applying some tokenization
scheme and then associating numeric vectors with the generated
tokens. There are two major techniques for tokenization: one-hot
encoding, and word embedding.

One-hot encoding is the most common, most basic way to turn
a token into a vector. We first associate a unique integer index with
every word/token and then turn this integer index into a binary
vector of size M (the size of the dictionary) – the vector is all zeros
except for the entry corresponding to the index, which is 1. This can
be done as word or character level. Keras has built-in utilities for
doing one-hot encoding of text at the word level or character level,
starting from raw text data, as shown below.

Input samples

samples <- c("The cat sat on the mat.",

"The dog ate my homework.")

Create a tokenizer, configured to only take into account

the 1,000 most common words. Then build the word index

tokenizer <- text_tokenizer(num_words = 1000) %>%

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 introduction to deep learning 29

fit_text_tokenizer(samples)

Turns strings into lists of integer indices

sequences <- texts_to_sequences(tokenizer, samples)

sequences

[[1]]

[1] 1 2 3 4 1 5

##

[[2]]

[1] 1 6 7 8 9

We could also directly get the one-hot binary

representations.

one_hot_results <- texts_to_matrix(tokenizer, samples,

mode = "binary")

we can recover the word index that was computed

word_index <- tokenizer$word_index

word_index

$the

[1] 1

##

$cat

[1] 2

##

$sat

[1] 3

##

$on

[1] 4

##

$mat

[1] 5

##

$dog

[1] 6

##

$ate

[1] 7

##

$my

[1] 8

##

$homework

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 introduction to deep learning 30

[1] 9

cat("Found", length(word_index), "unique tokens.\n")

Found 9 unique tokens.

Another popular and powerful way to associate a vector with a
word is the use of dense word vectors, also called word embeddings.
This means that rather than representing each word by a binary vec-
tor of a large size (in the example above, vectors are of size 1000),
we will represent it instead by a set of m real numbers, none of
which are typically zero. In other words, word embeddings are
low-dimensional floating point vectors. It’s common to see word
embeddings that are of length 256, 512, or 1,024, when dealing with
very large vocabularies. On the other hand, one-hot encoding words
generally leads to vectors that are of length 10,000, 20,000 or greater.
Thus word embeddings regresent more information into far fewer
dimensions.

th
is is

on
e of th
e

be
st

fil
m

s

ac
tu

al
ly

th
e

be
st I

ha
ve

ev
er

se
en th

e

fil
m

st
ar

ts

on
e

fa
ll

da
y

O
ne

−
ho

t
E

m
be

d

Figure 15: Depiction of a sequence of 20

words representing a single document:
one-hot encoded using a dictionary of
16 words (top panel) and embedded
in an m-dimensional space with m =
5 (bottom panel). Figure and caption
taken from textbook.

Figure 15 illustrates the idea of embedding with a dictionary of 16

and m = 5. Unlike the word vectors obtained via one-hot encoding,
word embeddings are learned from data. There are two ways to obtain
word embeddings:

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 introduction to deep learning 31

• If we have a large corpus of labeled documents, we can have the
neural network learn the word embeddings as part of the opti-
mization. In this setup, we start with random word vectors and
then learn word vectors in the same way we learn the weights of a
neural network. This is referred to as an embedding layer.

• Otherwise we can insert a precomputed embeddings in the em-
bedding layer, a process known as weight freezing. These are called
pretrained word embeddings. Examples are word2vec and GloVe. The
idea is that the positions of words in the embedding space pre-
serve semantic meaning, for example, synonyms should appear
near each other.

Let us now use the IMDB data and build classifier using standard
neural network.

Load the IMDB data with 10000 common words

We will keep only 20 of the starting words

of each review (maxlen)

max_features <- 10000

maxlen <- 20

imdb <- dataset_imdb(num_words = max_features)

Train/test sets

train_data <- imdb$train$x

train_labels <- imdb$train$y

test_data <- imdb$test$x

test_labels <- imdb$test$y

Keep only maxlen words in each review

train_data <- pad_sequences(train_data, maxlen = maxlen)

test_data <- pad_sequences(test_data, maxlen = maxlen)

We will use an embedding layer, specified by the function layer_embedding()

with 10000 as maximum input dimension (since we loaded 10000

common words), 20 as input size (since we truncate each review at 20

words) and learn 8-dimensional embeddings for each word. Then we
flatten the output of the embedding layer and use that as input to a
single dense layer for classification.

Neural net with embedding and classifier

model <- keras_model_sequential() %>%

layer_embedding(input_dim = 10000, output_dim = 8,

input_length = maxlen) %>%

layer_flatten() %>%

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 introduction to deep learning 32

layer_dense(units = 1, activation = "sigmoid")

model %>% compile(

optimizer = "rmsprop",

loss = "binary_crossentropy",

metrics = c("accuracy")

)

history <- model %>% fit(

train_data, train_labels,

epochs = 10,

batch_size = 32,

validation_split = 0.2

)

summary(model)

Model: "sequential"

__

Layer (type) Output Shape Param

==

embedding (Embedding) (None, 20, 8) 80000

__

flatten (Flatten) (None, 160) 0

__

dense (Dense) (None, 1) 161

==

Total params: 80,161

Trainable params: 80,161

Non-trainable params: 0

__

pred <- predict_classes(model, test_data)

cf <- caret::confusionMatrix(data = factor(pred),

reference = factor(test_labels))

round(cf$overall, 3)

Accuracy Kappa AccuracyLower AccuracyUpper AccuracyNull

0.760 0.521 0.755 0.766 0.500

AccuracyPValue McnemarPValue

0.000 0.000

This simple classifier with embedding results in 76% test accuracy.
This is remarkable since we are only using 20 words from each re-
view. We should note that merely flattening the embedded sequences

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 introduction to deep learning 33

and training a single dense layer on top leads to a model that treats
each word in the input sequence separately, without considering inter-
word relationships and sentence structure. Such relationships are better
handled using a recurrent neural network (RNN).

Structure of RNN layer

In a recurrent neural network (RNN), the input object X is a sequence.
Consider a corpus of documents, such as the collection of IMDb
movie reviews. Each document can be represented as a sequence of
L words, X = (X1, . . . , XL), where x` is the `-th word. The order
of the words, and closeness of certain words in a sentence, convey
semantic meaning. RNNs are designed to accommodate and take
advantage of the sequential nature of such input objects, much like
convolutional neural networks accommodate the spatial structure
of image inputs. The output Y can also be a sequence (such as in
language translation), but often is a scalar, like the binary sentiment
label of a movie review document.

A1 A2 A3 AL-1 AL=A`

O`

Y

X`

O1

X1

O2

X2

O3

X3

OL-1

XL-1

OL

Y

XL
. . .

W

U
B

W

B

W

B

W

B

W

B

W

B

U U U U

Figure 16: Schematic of a simple recur-
rent neural network.

The simple RNN processes sequences by iterating through the
sequence elements and maintaining a state containing information
relative to what it has seen so far. In effect, an RNN is a type of neu-
ral network that has an internal loop. The state of the RNN is reset
between processing two different, independent sequences (such as
two different IMDB reviews), so we still consider one sequence a sin-
gle data point: a single input to the network. What changes is that
this data point is no longer processed in a single step; rather, the net-
work internally loops over sequence elements. Figure 16 illustrates
the structure of a very basic RNN with a sequence X as an input and

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 introduction to deep learning 34

Y as output, and a hidden-layer sequence A1, . . . , AL. Each X` is a
vector. In the IMDB example X` could represent a one-hot encoding
or embedding for the `-th word. As the sequence is processed one
vector X` at a time, the network updates the activations A` in the
hidden layer, taking as input the vector X` and the activation vector
A`−1 from the previous step in the sequence. Each A` feeds into the
output layer and produces a prediction O` for Y. The last output OL

is the most relevant.
Mathematically, suppose each vector X` of the input sequence has

p components, X`1, . . . , X`p, and the hidden layer consists of K units
A`1, . . . , A`K. We represent the collection of K × (p + 1) weights wkj

for the input layer by a matrix W, and similarly U is a K × K matrix
of the weights uks for the hidden-to-hidden layers, and B is a K + 1
vector of weights βk for the output layer. Then

A`k = g

(
wk0 +

p

∑
j=1

wkjX`j +
K

∑
s=1

uks A`−1,s

)
,

and the output O` is computed as

O` = β0 +
K

∑
k=1

βk A`k,

for a quantitative response, or with an additional sigmoid activation
function for a binary response. Here g(·) is an activation function
such as ReLU. Notice that the same weights W, U and B are used as
we process each element in the sequence, i.e. they are not functions
of `. This is a form of weight sharing used by RNNs, and similar to
the use of filters in convolutional neural networks. As we proceed
from beginning to end, the activations A` accumulate a history of
what has been seen before, so that the learned context can be used
for prediction.

In keras we can implement a simple RNN using the ayer_simple_rnn()

function. The code below uses aembedding with a simple rnn with
32 units.

simple_rnn <- keras_model_sequential() %>%

layer_embedding(input_dim = 10000, output_dim = 8) %>%

layer_simple_rnn(units = 32) %>%

layer_dense(units = 1, activation = "sigmoid")

simple_rnn %>% compile(

optimizer = "rmsprop",

loss = "binary_crossentropy",

metrics = c("acc")

)

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 introduction to deep learning 35

history_srnn <- simple_rnn %>% fit(

train_data, train_labels,

epochs = 10,

batch_size = 128,

validation_split = 0.2

)

This model gives 72% accuracy on the test set.
We can also stack multiple simple RNN layers in order to increase

the representational power of a network. In such a setup, we have to
get all of the intermediate layers to return full sequences using the
argument return_sequences = TRUE:

multi_rnn <- keras_model_sequential() %>%

layer_embedding(input_dim = 10000, output_dim = 8) %>%

layer_simple_rnn(units = 32, return_sequences = TRUE) %>%

layer_simple_rnn(units = 32, return_sequences = TRUE) %>%

layer_simple_rnn(units = 32) %>%

layer_dense(units = 1, activation = "sigmoid")

multi_rnn %>% compile(

optimizer = "rmsprop",

loss = "binary_crossentropy",

metrics = c("acc")

)

history_mrnn <- multi_rnn %>% fit(

train_data, train_labels,

epochs = 10,

batch_size = 128,

validation_split = 0.2

)

In our example, even with stacking three RN layers, we still get a
test accuracy of about 70%. Keep in mind that we have only uses
20 words from each review. In later experiments, I increased this
number to 100 words per review. The resulting test accuracy for
the model with one simple RNN layer was about 80% and for the
multiple RNN layers was about 82%.

Long Short-Term Memory (LSTM)

Simple RNNs as we discussed above are not typically used often due
to a the fact that they are generally too simplistic to be of real use.
One major issue with simple RNNs is that although it should theoret-
ically be able to retain information about inputs seen many timesteps

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 introduction to deep learning 36

before, in practice, such long-term dependencies are impossible to
learn. 14 Instead we often use the LTSM layer15 14 This due to so called vanishing gradi-

ent problem: as we keep adding layers
to a network, the network eventually
becomes untrainable. See for example
Yoshua Bengio, Patrice Simard, and
Paolo Frasconi, “Learning Long-Term
Dependencies with Gradient Descent Is
Difficult,” IEEE Transactions on Neural
Networks 5, no. 2 (1994).
15 The underlying Long Short-Term
Memory (LSTM) algorithm was devel-
oped by Sepp Hochreiter and Jürgen
Schmidhuber, “Long Short-Term Mem-
ory,” Neural Computation 9, no. 8

(1997).

In an LSTM layer, two tracks of hidden-layer activations are main-
tained, so that when the activation A` is computed, it gets input from
hidden units both further back in time, and closer in time. With long
sequences, this structure overcomes the problem of early signals be-
ing washed out by the time they get propagated through the chain to
the final activation vector AL.

In keras we use the function layer_lstm() function to specify
a LSTM layer. The code block below show an LTSM layer using 32

hidden units.

model_ltsm <- keras_model_sequential() %>%

layer_embedding(input_dim = max_features, output_dim = 8) %>%

layer_lstm(units = 32) %>%

layer_dense(units = 1, activation = "sigmoid")

model_ltsm %>% compile(

optimizer = "rmsprop",

loss = "binary_crossentropy",

metrics = c("acc")

)

history_ltsm <- model_ltsm %>% fit(

train_data, train_labels,

epochs = 10,

batch_size = 128,

validation_split = 0.2

)

The resulting test accuracy is about 76%. If we increase the word
usage to 100 words per review, the test accuracy becomes about 82%.
In the textbook, the reviews were truncated after 500 words. There an
LTSM classifier achieved test accuracy of 87%.

An alternative to LSTM layer is the Gated recurrent unit (GRU)
layer.16 GRU layers work using the same principle as LSTM, but are 16 Junyoung Chung et al., “Empirical

Evaluation of Gated Recurrent Neural
Networks on Sequence Modeling,”
Conference on Neural Information
Processing Systems (2014), https:
//arxiv.org/abs/1412.3555.

streamlined and thus cheaper to run. Although they may not have as
much representational power as LSTM. keras implements GRU layer
using layer_gru() function.

Bidirectional RNNs

A bidirectional RNN is a common RNN variant that can offer greater
performance than a regular RNN on certain tasks. It is frequently
used in natural-language processing.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1412.3555

ST 563 introduction to deep learning 37

As we see before, RNNs are order/time dependent: they process
input sequences in a certain order, and shuffling or reversing the
input sequence can completely change the representations the RNN
extracts from the sequence. This is precisely the reason RNNs tend to
perform well on problems where order is meaningful. A bidirectional
RNN exploits the order sensitivity of RNNs: it consists of using
two regular RNNs, each of which processes the input sequence in
one direction (original sequence and reversed sequence), and then
merging their representations. By processing a sequence both ways,
a bidirectional RNN can catch patterns that may be overlooked by a
unidirectional RNN.

We can use the function bidirectional() to employ bidirectional
RNNs, as we demonstrate below.

model_bd <- keras_model_sequential() %>%

layer_embedding(input_dim = max_features, output_dim = 8) %>%

bidirectional(

layer_lstm(units = 32)

) %>%

layer_dense(units = 1, activation = "sigmoid")

model_bd %>% compile(

optimizer = "rmsprop",

loss = "binary_crossentropy",

metrics = c("acc")

)

history_bd <- model_bd %>% fit(

train_data, train_labels,

epochs = 10,

batch_size = 128,

validation_split = 0.2

)

The test accuracy of the model above is about 75%. If we use number
of words to 100, the test accuracy becomes about 83%.

Overall, bidirectional RNNs are useful on natural-language pro-
cessing problems. But they may not be strong performers on se-
quence data where the recent past is much more informative than the
beginning of the sequence.

Regularization

As we have seen in standard neural nets and convnets, we can reg-
ularize RNNs as well to prevent overfitting. This can be done using

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 introduction to deep learning 38

dropout, which randomly zeros out input units of a layer. But how to
correctly apply dropout in recurrent networks isn’t a trivial question.
Yarin Gal developed the proper way to perform dropout regulariza-
tion for RNNs.17 Specifically, the same dropout pattern of dropped 17 Yarin Gal, Uncertainty in Deep

Learning (PhD Thesis),” October 13,
2016, http://mlg.eng.cam.ac.uk/
yarin/blog_2248.html.

units should be applied at every timestep, instead of a dropout mask
that varies randomly from timestep to timestep. In addition, in or-
der to regularize the representations formed by the recurrent layers
(e.g., gru and lstm), a temporally constant dropout mask should be
applied to the inner recurrent activations of the layer – this is called
a recurrent dropout mask. Using the same dropout mask at every
timestep allows the network to properly propagate its learning error
through time, without which the learning process will be disrupted.

In keras, every recurrent layer has two dropout-related arguments:
dropout (a float specifying the dropout rate for input units of the
layer) and recurrent_dropout (specifying the dropout rate of the
recurrent units).

Autoencoders

An autoencoder is a neural network designed to learn efficient rep-
resentations of the input features. These representations are called
codings – they can be used for a variety of dimension reduction needs,
as well as anomaly detection and generative modeling.

An autoencoder has a very similar structure to feedforward neural
networks that we discussed in the previous sections with one pri-
mary difference: When we use an autoencoder in an unsupervised
context, the number of units in the output layer is equal to the num-
ber of inputs. Thus, the simplest autoencoder will use the hidden
layers to try to re-create the inputs. The algorithm can be described
in two parts:

(1) An encoder function f (·) that transforms the input X to codings Z,
that is, Z = f (X).

(2) A decoder function g(·) that transforms codings Z to a reconstruc-
tion of the inputs X′, that is, X′ = g(Z).

For dimension reduction purposes, the goal is to create a reduced
set of codings that adequately represents input X. Consequently, we
constrain the internediate hidden layers so that the number of units
is less than the number of inputs. An autoencoder whose internal
representation has a smaller dimensionality than the input data is
known as an undercomplete autoencoder. Figure 17 shows a schema
of an autoencoder. This compression of the hidden layers forces the
autoencoder to capture the most dominant features of the input data
and the representation of these signals are captured in the codings.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

http://mlg.eng.cam.ac.uk/yarin/blog_2248.html
http://mlg.eng.cam.ac.uk/yarin/blog_2248.html

ST 563 introduction to deep learning 39

Figure 17: Schema of an undercomplete
autoencoder with three fully connected
hidden layers.

The weights of the network are learned by minimizing some loss
function, e.g., the squared error loss, that measures how far the out-
put X′ is from the input X.

Note that an autoencoder is a dimension reduction method does
not rely of an response, making it an unsupervised learning method.
Recall we have dicussed methods like this such as PCA which uses
linear combinations to create new features Z from input X. Autoen-
coders esentially generalizes PCA when used with nonlinear activa-
tions like ReLU. It can be shown that if we use only identity activation
function in an autoencoder and the squared error loss, then the au-
toencoder reduces to PCA.

We will demonstrate construction of a basis autoencoder using
MNIST digits data. We cab use h2o.deeplearning() architecture.
Here we need to set autoencoder = TRUE. However, in accordance to
what we have done in this chapter so far, we will build an autoen-
coder using keras directly.

library(keras)

Prep data

mnist <- dataset_mnist()

Prep training set

train_images <- mnist$train$x %>%

array_reshape(c(60000, 28 * 28))

train_images <- train_images / 255

Set input dimension and number of codings

input_dim <- ncol(train_images)

output_dim <- 100

Input layer

input_layer <- layer_input(shape = input_dim)

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 introduction to deep learning 40

Basic encoder

encoder <- input_layer %>%

layer_dense(units = output_dim, activation = "tanh")

store the predictive model to extract codings

en <- keras_model(input_layer, encoder)

For demosntration, we use a single hidden layer with only 100 cod-
ings. This is reducing the original 784 features down to 100 dimen-
sions. In this example we use a hyperbolic tangent activation function
which has a nonlinear sigmoidal shape.

Now we append the decoder part to the encoder as follows. Re-
call, the decoder simply taken the codings, and transforms them to
the original 784 dimensional output.

Decoder: output dimensions is the same as input

decoder <- encoder %>%

layer_dense(units = input_dim)

Combine to get autoencoder

auto_encode <- keras_model(inputs = input_layer,

outputs = decoder)

Finally, we compile and train our model. Here we have use the
adam optimizer. We can choose other optimizers as well.

Compile

auto_encode %>% compile(

loss='mean_squared_error',

optimizer='adam'

)

summary(auto_encode)

##

Model: "model_4"

Layer (type) Output Shape Param

===

input_2 (InputLayer) [(None, 784)] 0

dense_2 (Dense) (None, 100) 78500

dense_3 (Dense) (None, 784) 79184

===

Total params: 157,684

Trainable params: 157,684

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 introduction to deep learning 41

Non-trainable params: 0

##

Fit on training data

history <- auto_encode %>%

fit(train_images, train_images,

epochs=10,

batch_size=256

)

To extract the reduced dimension codings, we can use the predict
function on the stored model, en. The reduced codings we extract
are sometimes referred to as deep features (DF) and they are similar in
nature to the principal components for PCA. These can be used for
further anaylsis as desired by the user.

Prep test set

test_images <- mnist$test$x %>%

array_reshape(c(10000, 28 * 28))

test_images <- test_images / 255

Obtain codings of the test set

encoded_imgs <- en %>% predict(test_images)

encoded_imgs[1:10,1:5]

##

[,1] [,2] [,3] [,4] [,5]

[1,] -0.15589681 0.050962571 0.009803719 -0.050130673 -0.21344839

[2,] 0.12235812 -0.009337614 0.114560433 -0.053810351 -0.10471506

[3,] -0.28971756 0.090088658 -0.085153557 0.117609687 -0.08049023

[4,] 0.20091307 0.137902737 0.125100225 -0.313515514 -0.08615831

[5,] -0.03781957 -0.079122491 -0.088342912 0.132428601 -0.24613377

[6,] -0.31293502 0.002913348 -0.116707169 0.077043921 -0.04032954

[7,] -0.03729171 -0.237965494 0.142684236 -0.061460491 0.02276068

[8,] 0.02480581 0.082621485 0.202087060 -0.219857648 0.17016260

[9,] 0.16141985 0.061030693 0.104084864 0.009887357 -0.08235224

[10,] 0.03605235 0.083487883 0.241226912 -0.224353850 0.02368901

##

We can obtain the reconstructed images by using the predict()

function on the entire autoencoder.

Reconstructed images for test set

recon_imgs <- auto_encode %>% predict(test_images)

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 introduction to deep learning 42

Note that the reconstructed images are still vectorized, that is, each
image is in a row of recon_imgs. If we wish to plot these images and
compare to the originals, we need to put each row in a 28× 28 matrix
and then plot them. Figure 18 shows the original and reconstructed
images of a few samples from the test set. I have switched the black-
/white colors for better visuals.

Figure 18: Original (top row) vs. re-
constructed (bottom row) images for
MNIST test data.

Stacked autoencoders

Just like neural networks, autoencoders can have multiple hidden
layers. We refer to autoencoders with more than one layer as stacked
autoencoders or deep autoencoders. While usually we train autoencoders
with only one hidden layer, adding additional layers to autoencoders
can have advantages. Adding additional depth can allow the codings
to represent more complex, nonlinear relationships at a reduced
computational cost.

Figure 19: Examples of stacked autoen-
coders (last two panels). It is common
practice to have symmetric hidden layer
sizes between the encoder and decoder
layers.

Typically, we use symmetric autoencoders – Figure 19 shows some
examples of stancked autoencoders. While it has been observed18 18 Hinton, Geoffrey E, and Ruslan R

Salakhutdinov. 2006. “Reducing the
Dimensionality of Data with Neural
Networks.” Science 313 (5786). Ameri-
can Association for the Advancement of
Science: 504 – 7.

that deeper autoencoders often yield better data compression than
shallower, or linear autoencoders. However, this is not always the
case and we do need to tune autoencoders using usual techniques

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 introduction to deep learning 43

described before such as regularization, choice of optimizers, number
of layers etc.

Denoising autoencoders

The denoising autoencoder is a stochastic version of the autoencoder,
where our goal is to reconstruct the input from a noisy copy of the
input. This forces the codings to learn more robust features of the
inputs and prevents them from merely learning the identity function;
even if the number of codings is greater than the number of inputs.
We can think of a denoising autoencoder as having two objectives:

(i) try to encode the inputs to preserve the essential signals, and

(ii) try to undo the effects of a corruption process stochastically
applied to the inputs of the autoencoder.

The latter can only be done by capturing the statistical dependencies
between the inputs. The corruption process typically follows one of
two approaches.

• We can randomly set some of the inputs (as many as half of them)
to zero or one. The most common approach is to set randomly
selected input values to zero to imply missing values.19 This is 19 Vincent, Pascal, Hugo Larochelle,

Yoshua Bengio, and Pierre-Antoine
Manzagol. 2008. “Extracting and Com-
posing Robust Features with Denoising
Autoencoders.” In Proceedings of
the 25th Iternational Conference on
Machine Learning, 1096–1103. ACM.

called on/off imputation. This can be done by manually imputing
zeros or ones into the inputs or adding a dropout layer between
the inputs and first hidden layer.

• Alternatively, for continuous-valued inputs, we can add pure
Gaussian noise.20 20 Vincent, Pascal. 2011. “A Connection

Between Score Matching and Denoising
Autoencoders.” Neural Computation 23

(7). MIT Press: 1661–74.
Figure 20 illustrates the differences between these two corruption
options for a sampled input where about 30% of the inputs were
corrupted.

Figure 20: Example of corrupted im-
ages: Original digit (left), corrupted
data with on/off imputation (middle),
and corrupted data with Gaussian noise
(right).

To train a denoising autoencoder, we supply our corrupted inputs
to the input layer and supply the non-corrupted inputs as output.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 introduction to deep learning 44

Specifically, the autiencoder model remains the same as before, the
only change in the code for fitting. The previous fitting code is re-
placed by the following code.

history <- auto_encode %>%

fit(corrupt_images, train_images,

epochs=10,

batch_size=256

)

Here corrupt_images are the training images corrupted by noise.
The remaining process stays, essentially, the same. Figure 21 shows
original test images, corrupted versions, and reconstructed images.

Figure 21: Examples of original test
images (top row), corrupted versions
(middle rows), and reconstructed
images (bottom rows).

Anomaly detection

Note that the loss function in an autoencoder measures the recon-
struction error. We can use this quantity for anomaly detection using
autoencoders.21 22 Specifically, we can identify those observations 21 Sakurada, Mayu, and Takehisa Yairi.

2014. “Anomaly Detection Using
Autoencoders with Nonlinear Dimen-
sionality Reduction.” In Proceedings
of the Mlsda 2014 2nd Workshop on
Machine Learning for Sensory Data
Analysis, 4. ACM.
22 Zhou, Chong, and Randy C Paf-
fenroth. 2017. “Anomaly Detection
with Robust Deep Autoencoders.” In
Proceedings of the 23rd Acm Sigkdd
International Conference on Knowledge
Discovery and Data Mining, 665–74.
ACM.

that have larger reconstruction error rates. These observations have
feature attributes that differ significantly from the other features. We
might consider such features as anomalous, or outliers. We can sim-
ple compute MSE as follows. Figure 22 shows the histogram of the
MSE values.

training prediction for anomaly detection

train_pred <- auto_encode %>% predict(train_images)

mse <- rowMeans((train_images - train_pred)ˆ2)

Figure 22: Histogram of reconstruction
MSEs for training data.

We can simply look at the actual and reconstructed digits of the
top few worst MSEs. Figure 23 shows top 10 such figures. It is fairly
intuitive why these observations have such large reconstruction er-
rors as the many of the corresponding input digits are poorly written.

In addition to identifying outliers, we can also use anomaly detec-
tion to identify unusual inputs such as fraudulent credit card transac-
tions and manufacturing defects. It is a often good strategy to retrain

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 introduction to deep learning 45

Figure 23: Top 10 images with highest
reconstruction MSEs.

the autoencoder on a subset of the inputs that are deemed high qual-
ity inputs. For example, we may include all inputs that achieved a
reconstruction error within the 75-th percentile and exclude the rest.
We would then retrain an autoencoder, use that autoencoder on new
input data, and if it exceeds a certain percentile declare the inputs
as anomalous. However, deciding on the threshold that determines
an input as anomalous is subjective and often relies on the business
purpose.

Other various autoencoders

We have only discusses basic autoencoders. This is an active area of
research and new methods are continuously being developed. A few
of the other available autoencoders are mentiond below.

• Sparse autoencoders are used to extract features that are most influ-
ential. This is useful when we try to understand what the most
unique features of a data set are.

• Stacked convolutional autoencoders are used to reconstruct visual
features processed through convolutional layers. Manual vector-
ization of the image is not required here. As a result, such au-
toencoders often work well for dimension reduction or feature
extraction on realistic-sized high-dimensional images.

• Variational autoencoders can be used to create new instances that
closely resemble the input data that are completely generated from
the distributions of the codings.

• Contractive autoencoders constrain the derivative of the hidden
layer(s) activations to be small with respect to the inputs. This
ensures that small perturbations to the input are essentially con-
sidered noise, which makes the codings more robust.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

	Introduction
	Single Layer Neural Networks
	Fitting a neural netwrok
	Multilayer Neural Networks
	Convolutional Neural Networks
	Recurrent Neural Networks
	Autoencoders

