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Introduction

Tree-based methods partition the feature space into a set of regions,
and then fit a simple model, such as a constant function, in each
region. They are conceptually simple yet powerful methods, and
useful for interpretation.
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Figure 1: Top Left: A partition of
two-dimensional feature space that
could not result from recursive binary
splitting. Top Right: The output of
recursive binary splitting on a two-
dimensional example. Bottom Left: A
tree corresponding to the partition in
the top right panel. Bottom Right: A
perspective plot of the prediction sur-
face corresponding to that tree. Figure
and caption taken from Introduction to
Statistical Learning.

Suppose we have a regression problem with continuous response
Y and two predictors X = (X1, X2). Suppose E(Y|X) = f (X). The top
left panel of Figure 1 shows a partition of the feature space by lines
that are parallel to the coordinate axes. In each partition element
we can model f (X) with a different constant. Note that there are 5

regions, say, R1, . . . , R5, in the top left panel of Figure 1. Since we
are fitting a constant function in each region, we are modeling our
regression function at any X as

f (X) =
5

∑
m=1

cm I(x ∈ Rm),

where c1, . . . , c5 are unknown constants. Since f (X) is constant in
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each region, ĉm is simply average of Y values over the corresponding
region.

However, although each partitioning line has a simple description
like X1 = c, some of the resulting regions are complicated to describe,
and interpret. In theory, the regions could have any shape. However,
we choose to divide the predictor space into high-dimensional rect-
angles, or boxes, for simplicity and for ease of interpretation of the
resulting predictive model, see top right panel of Figure 1.

In general, we first split the space into two regions, and model the
response by the mean of Y in each region. We choose the variable
and split-point to achieve the best fit.1 Then one or both of these 1 We will describe what “best fit” means

in this context in the next section.regions are split into two more regions, and this process is continued,
until some stopping criterion is applied. For example, in the top
right panel of 1, we first split at whole space into regions X1 ≤ t1

and X1 > t1. Then the region X1 ≤ t1 is split into two according to
X2 ≤ t2 and X2 > t2. Similarly, and the region X1 > t1 is split into
two: X1 ≤ t3 and X1 > t3. Finally, the region X1 > t3 is split again
at X2 = t4. The corresponding regression model predicts Y with a
constant cm in region Rm can be written as before:

f̂ (X) =
5

∑
m=1

ĉm I(X ∈ Rm),

where ĉm = average(Yi|Xi ∈ Rm). As an example, the bottom right
panel of Figure 1 is a perspective plot of the regression surface from
this model.

Figure 2: Terminology ralated to a
decision tree.

The same model described above can be represented by a binary
tree, see the bottom left panel of Figure 1. The top of the tree rep-
resents the full dataset. Then the branches represent the splitting at
each step as we keep splitting the data into region. Observations sat-
isfying the condition at each junction are assigned to the left branch,
and the others to the right branch. The terminal nodes, called leaves of
the tree correspond to the regions R1, . . . , R5. This is the reason we
call such methods decision tree methods. Such trees can be used for
classfication problems as well. Figure 2 shows a basic (classification)
tree and the corresponding terminology used for any tree.
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Figure 3: A binary tree for the involving
more than two predictors. Figure taken
from Introduction to Statistical Learning.

A key advantage of the binary tree is its interpretability. The fea-
ture space partition is fully described by a single tree. When there are
more than two inputs, it is difficult to draw partitions like that in the
top right panel of Figure 1, but the binary tree representation works
in the same way. For example, a binary tree for the involving more
than two predictors is shown in Figure 3.
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Regression Trees

Suppose we have p predictors, X = (X1, . . . , Xp) and a continuous re-
sponse Y. Basic regression trees aim to partition the data into smaller
regions that are more homogeneous with respect to the response.
Recall that, as we are growing the tree, we only split a region into
two using only one predictor at a split point. To achieve outcome
homogeneity, regression trees need to determine:

• The predictor Xj to split on and split point s, and
• The depth or complexity of the tree.

There are many techniques for constructing regression trees. Perhaps
the most utilized method is the classification and regression tree
(CART) methodology.2 We first discuss the CART algorithm. 2 Breiman, L., Friedman, J., Olshen, R.

and Stone, C. (1984). Classification and
Regression Trees, Wadsworth, New
York.

Suppose first that we have partitioned the data into M regions
R1, R2, . . . , RM. Thus ĉm = average(Yi|Xi ∈ Rm). Therefore, for this
configuration of regions, we have the residual sum of squares

RSS =
M

∑
m=1

∑
i:Xi∈Rm

(Yi − ĉm)
2.

In tree-based methods, we construct the regions dynamically from
the data. Thus one might try to regions R1, . . . , RM that minimize the
RSS above. Unfortunately, if the regions could be any of any shape,
it is computationally infeasible to consider every possible partition of
the feature space into M regions. For this reason, we take a top-down,
greedy approach that is known as recursive binary splitting.

For regression, we begin with the entire data set, and search ev-
ery distinct value of every predictor to find the predictor and split
point that partitions the data into two groups such that the overall
sums of squares error are minimized. Formally, for the j-th predictor,
and split point s, we have two regions: R1(j, s) = {X|Xj ≤ s} and
R2(j, s) = {X|Xj > s}, and the corresponding sum pf squares

RSS(j, s) = ∑
i:Xi∈R1

(Yi − ĉ1)
2 + ∑

i:Xi∈R2

(Yi − ĉ2)
2.

Note that we have indexed the regions by j and s since they depend
on the splitting variable Xj and the split point s. Thus the resulting
RSS is also indexed by (j, s). Now we find the best value of j and
s that minimize RSS(j, s). Then within each of the two regions, we
apply the same method and search for the predictor and split point
that best reduces RSS, and so on. For each splitting variable, the
determination of the split point s can be done very quickly and hence
by scanning through all of the inputs, determination of the best pair
(j, s), for each region, is feasible.
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Let us now go though the process of building a regression tree.
Consider the Hitters data set in the ISLR2 library to predict a base-
ball player’s Salary (1987 annual salary on opening day in thousands
of dollars) based on Years (the number of years that he has played in
the major leagues) and Hits (the number of hits that he made in the
previous year). Examination of the data reveals that there are some
missing (NA) values in the Salary variable. We first remove the miss-
ing salary values, and log-transform Salary so that its distribution has
more of a typical bell-shape. Figure 4 shows plots of Salary vs Years

and Hits.

library(ISLR2)

dim(Hitters)

## [1] 322 20

Hitters <- na.omit(Hitters)

Hitters$Salary <- log(Hitters$Salary)

dim(Hitters)

## [1] 263 20

head(Hitters)

## AtBat Hits HmRun Runs RBI Walks Years CAtBat CHits CHmRun

## -Alan Ashby 315 81 7 24 38 39 14 3449 835 69

## -Alvin Davis 479 130 18 66 72 76 3 1624 457 63

## -Andre Dawson 496 141 20 65 78 37 11 5628 1575 225

## -Andres Galarraga 321 87 10 39 42 30 2 396 101 12

## -Alfredo Griffin 594 169 4 74 51 35 11 4408 1133 19

## -Al Newman 185 37 1 23 8 21 2 214 42 1

## CRuns CRBI CWalks League Division PutOuts Assists Errors

## -Alan Ashby 321 414 375 N W 632 43 10

## -Alvin Davis 224 266 263 A W 880 82 14

## -Andre Dawson 828 838 354 N E 200 11 3

## -Andres Galarraga 48 46 33 N E 805 40 4

## -Alfredo Griffin 501 336 194 A W 282 421 25

## -Al Newman 30 9 24 N E 76 127 7

## Salary NewLeague

## -Alan Ashby 6.163315 N

## -Alvin Davis 6.173786 A

## -Andre Dawson 6.214608 N

## -Andres Galarraga 4.516339 N

## -Alfredo Griffin 6.620073 A

## -Al Newman 4.248495 A
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Figure 4: Salary vs Years and Hits in the
Hitters data.
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Figure 5: RSS for different split points
for Years. The minimum occurs at 4.5.

Now we determine the variable and the corresponding split point.
Fig. 5 shows the RSS for the continuum of splits for Years. The op-
timal split point for this variable is 4.5. The RSS associated with this
split is compared to the optimal values for all of the other predictors
(just Hits in this case) and the split corresponding to the absolute
minimum error is used to form the two regions. In our example, the
Years variable was chosen to be the best, and the resulting tree is in
Figure 6. If stop building the tree at this point, all sample with val-
ues Years less than 4.5 would be predicted to be 5.11 (the average of
the salary for these samples) and samples above the splits all have a
predicted value of 6.35.

Years

1

< 4.5 ≥ 4.5

Node 2 (n = 90)

4

5

6

7

8
Node 3 (n = 173)

4

5

6

7

8

Figure 6: Splitting the initial data into
two regions.
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Figure 7: Splitting the regions in Figure
6 further.

Next, we split each of the regions into two using the same algo-
rithm as above. The resulting three is shown in Figure 7. At this
point, the predictions for each region are 4.89 when Years less than
3.5, 5.58 when Years is between 3.5 and 4.5, 6 when Years is more
than 4.5 and Hits is less than 117.5, and 6.74 when Years is more
than 4.5 and Hits is more than 117.5.

We continue in this manner until we grow a large tree. Note that
one variable can be used multiple times times throughout the tree
building process. Similarly, some of the variables might never be
used at all. Now the natural question is: how deep/complex should
we grow the tree? Growing an overly complex tree will have the
risk of overfitting our training data. This might result in poor test
performance. On the other hand, growing a small tree might result in
poor prediction. There are two primary approaches to find the “right
size” of a regression tree: (1) early stopping, and (2) pruning.
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Early stopping

Using early stopping, we restrict tree growth explicitly using a pre-set
criterion. Two of the most common approaches are as follows:

• restrict the tree depth to a certain level: we stop splitting after a
certain depth, say, 5 levels. This criterion results in shallow trees,
resulting in less variance, but more bias.

• restrict the minimum number of observations allowed in any ter-
minal node: stop splitting intermediate nodes which contain too
few data points. In the extreeme case where each leaf contains
only one oservation, we are essentially interpolating the training
data. This results in overfitting and high variance. So restricting a
minimum node size reduces variance. These two approaches can
be applied independently of each other, however, they do interact.
Often, we use both of these criteria to build a tree.

Tree Pruning

In this approach, we first grow a a very large, complex tree, T0, stop-
ping the splitting process only when some minimum node size (say
5) is reached. Then prune this tree using cost-complexity pruning3 to 3 Also known as weakest link pruning.

obtain a subtree. We define a subtree T, a subset of T0, to be any tree
that can be obtained by pruning T0, that is, collapsing any number of
its internal nodes. We index terminal nodes by m, with node m rep-
resenting region Rm. Let |T| denote the number of terminal nodes in
T. We consider a sequence of trees indexed by a nonnegative tuning
parameter α, such that,

RSS(α) =
|T|
∑

m=1
∑

Xi∈Rm

(Yi − ĉm)
2 + α |T|

is minimized. The tuning parameter α is called the complexity param-
eter, and it controls a trade-off between the subtree’s complexity and
its fit to the training data. When α = 0, then the subtree T will simply
equal T0. However, as α increases, there a tree with many terminal
nodes will have larger RSS(α), and so the quantity will tend to be
minimized for a smaller subtree. It turns out that as we increase α

from zero, branches get pruned from the tree in a nested and pre-
dictable fashion, so obtaining the whole sequence of subtrees as a
function of α is easy.4 We can select a value of α using holdout or 4 Breiman et al. (1984). Classification

and Regression Trees. Chapman and
Hall, New York.

cross-validation. Breiman et al. (1984) also propose using the one-
standard-error rule on the optimization criteria for identifying the
simplest tree: find the smallest tree that is within one standard error
of the tree with smallest absolute error. Another approach to select
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the tree size is to choose with the numerically smallest error. We then
return to the full data set and obtain the subtree corresponding to α.

There are several packages in R that are commonly used to build
a regression (and classification) tree, such as rpart, party (uses a dif-
ferent splitting criterion called conditional inference), tree, and so on.
The textbook gives demonstration based on the tree package. Here
we demonstrate the rpart library, and the function of the same name.
Let us use the Hitters data as before, but with all the predictors. The
rpart fucntion has a few parameters that control the tree building5 5 See ?rpart.control for details. Also

see https://cran.r-project.org/web/

packages/rpart/index.html for an
introduction to rpart functionality.

First we grow a large tree and look at the optimal subtrees for each
value of the complexity parameter (denoted by cp in rpart).

set.seed(1001)

T0 <- rpart(Salary ~ .,

data = Hitters,

control = rpart.control(xval = 10,

minbucket = 2,

cp = 0))

Here xval=10 specifies that we are using 10-fold CV to estimate the
prediction error corresponding to each value of the complexity pa-
rameter. Also, minbucket = 2 indicates that the minimum number of
observations in a terminal node must be 2. Finally, cp = 0 indicates
that the threshold complexity parameter is zero, that is, we will use a
grid on cp values all the way to zero. If we set cp = 0.1 instead, only
values down to 0.1 would be considered. In rpart, the parameter cp
is not exactly the same as α. Instead, it uses the following formula:
for a subtree T,

RSS(cp) =
|T|
∑

m=1
∑

Xi∈Rm

(Yi − ĉm)
2 + cp |T| RSS(T1),

where T1 is a tree with no splits. Thus cp is a scaled, unit less, ver-
sion of α. A value of cp = 1 will always result in a tree with no splits.
For regression models the scaled cp has a very direct interpretation:
if any split does not increase the overall R2 of the model by at least
cp then that split is decreed to be, a priori, not worth pursuing. There
are other criteria as well, that we do not explicitly set in this example.

Let us now look at the cross-validated prediction errors (xerror
column below) and the corresponding standard error estimates (xstd
column below). The relative error is 1− R2.

printcp(T0)

To save space, we have shown only part of the output of the previous
command.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu
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##

## Regression tree:

## rpart(formula = Salary ~ ., data = Hitters, control = rpart.control(xval = 10,

## minbucket = 2, cp = 0))

##

## Variables actually used in tree construction:

## [1] Assists AtBat CAtBat CHits CHmRun CRBI CRuns CWalks

## [9] Division Errors Hits HmRun NewLeague PutOuts RBI Runs

## [17] Walks Years

##

## Root node error: 207.15/263 = 0.78766

##

## n= 263

##

## CP nsplit rel error xerror xstd

## 1 5.6894e-01 0 1.000000 1.00561 0.065469

## 2 6.1288e-02 1 0.431062 0.48689 0.054917

## 3 6.1195e-02 2 0.369774 0.43266 0.056019

## 4 5.7784e-02 3 0.308579 0.43266 0.056019

## 5 3.0786e-02 4 0.250795 0.36961 0.059732

## 6 1.3097e-02 5 0.220008 0.28086 0.031432

## 7 1.1701e-02 6 0.206912 0.27952 0.030926

## 8 1.1215e-02 7 0.195211 0.27986 0.031201

## 9 8.2164e-03 8 0.183996 0.28125 0.031467

## ...

## ...

## 68 6.3797e-05 74 0.041751 0.36034 0.042937

## 69 4.5067e-05 75 0.041687 0.36166 0.043262

## 70 4.3197e-05 76 0.041642 0.36123 0.043238

## 71 3.9989e-05 77 0.041599 0.36123 0.043238

## 72 0.0000e+00 78 0.041559 0.36107 0.043257

##

0.4

0.6

0.8

1.0

−10.0 −7.5 −5.0 −2.5

log(CP)

E
rr

or

Figure 8: Cross-validated errors vs log
of complexity parameter values.

The minimum error corresponds the following cp value. Here Upper

and Lower correspond to Error plus/minus 1-SE.

## CP Error Lower Upper

## 7 0.01170077 0.2795239 0.2485983 0.3104495

Thus we can use either cp = 0.012, or use the 1-SE rule to chose cp

= 0.013. Recall that larger cp implies smaller tree size. Now we can
prune the tree using the chosen value of cp (using 1-SE rule) as fol-
lows.
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final <- prune(T0, cp = 0.013)

rpart.plot(final)
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Figure 9: Final pruned tree for the
Hitters data.

Alternatively, we can use caret as well, using the train() function
with method = rpart.

library(caret)

set.seed(1001)

hit_tree <- train(Salary ~ ., data = Hitters,

method = "rpart",

tuneLength = 70,

trControl = trainControl(method = "cv",

number = 10))

hit_tree$bestTune

## cp

## 2 0.008245477
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or

While the minimum error is obtained for cp = 0.008, we can again
apply 1-SE rule, and obtain a larger cp value of 0.016.

final_caret <- prune(hit_tree$finalModel, cp = 0.016)

rpart.plot(final_caret)
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Figure 10: Pruned tree for Hitters data
using caret.

Overall, the following steps are used to choose α using cross-
validation, see the textbook, algorithm 8.1.

1. Use recursive binary splitting to grow a large tree on the training
data, stopping only when each terminal node has fewer than some
minimum number of observations.

2. Apply cost complexity pruning to the large tree in order to obtain
a sequence of best subtrees, as a function of α.

3. Use K-fold cross-validation to choose α. That is, divide the train-
ing observations into K folds. For each k = 1, . . . , K:

(a) Repeat Steps 1 and 2 on all but the kth fold of the training
data.

(b) Evaluate the mean squared prediction error on the data in the
left-out k-th fold, as a function of α.

Average the results for each value of α, and pick α to minimize the
average error.

4. Return the subtree from Step 2 that corresponds to the chosen
value of α.
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The CART methodology can also handle missing data. Missing
data are ignored when building the tree. For each split, one evaluates
a variety of alternatives, called surrogate splits: a split whose results
are similar to the original split actually used in the tree, If a surrogate
split approximates the original split well, it can be used when the
predictor data associated with the original split are not available. In
practice, several surrogate splits may be saved for any particular split
in the tree.

We can assess the relative importance of the the predictors to the
outcome once we chose the final tree. One way to compute an aggre-
gate measure of importance is to keep track of the overall reduction
in the optimization criteria for each predictor.6 In our example, we 6 Breiman et al. (1984)

can tabulate the reduction RSS attributed to each variable. If a single
variable could be used multiple times in a tree, the total reduction
in RSS across all splits by a variable are summed up and used as the
total feature importance. When using caret, importance values are
scaled so that the most important feature has a value of 100. The re-
maining features are then scored based on their relative reduction
of RSS. Also, since there may be candidate variables that are impor-
tant but are not used in a split, the top competing variables are also
tabulated at each split. In caret, the varImp() function can be used.

plot(varImp(hit_tree))
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So far we have only discussed the case where the predictors are
continuous. However, splitting methods are also available for categor-
ical data. For a binary predictor(say 0/1), splitting can be done based
on whether the predictor takes value 0 or 1. For a categorical predic-
tor with more than two levels, a split amounts to assigning some of
the qualitative values to one branch and assigning the remaining to
the other branch.

Classification Trees

In this setting, the outcome variable is a categorical variable taking
possible values 1, . . . , K. In this case, we predict that each observation
belongs to the most commonly occurring class of training observa-
tions in the region to which it belongs. In interpreting the results of
a classification tree, we are often interested in both the class predic-
tion corresponding to a particular terminal node region, and the class
proportions among the training observations that fall into that region.
Compared to regresion trees, the only changes needed in the tree
algorithm are the criteria for splitting nodes and pruning the tree.7 7 Squared-error criterion might not be

suited for a classification problem.An ideal node would be the one with all observations are from the
same class. Thus one alternative to RSS is to look at some measures
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of node impurity. In a node m, representing a region Rm, let p̂mk be the
proportion of training observations in Rm that are from the k-th class.
We classify the observations in node m to the majority class in node
m, that is, the value of k that maximizes p̂mk. Based on this observa-
tion, we can look at three different measures of node impurity:

• Misclassification error: 1−maxk p̂mk,

• Gini index: ∑K
k=1 p̂mk(1− p̂mk),

• Cross-entropy or deviance: −∑K
k=1 p̂mklog( p̂mk).

It turns out that classification error is not sufficiently sensitive
for tree-growing, and in practice we often prefer one of the other
two measures. Gini index is a measure of total variance across the K
classes. Gini index takes on a small value if all of the p̂mk are close
to zero or one - a small value indicates that a node contains pre-
dominantly observations from a single class. The third measure,
Cross-entropy, will take on a value near zero if all of the p̂mk are close
to zero or one. Therefore, like the Gini index, the entropy will take
on a small value if the m-th node is pure. In fact, it turns out that
the Gini index and the entropy are quite similar numerically. Thus,
when building a classification tree we would use either Gini or cross-
entropy criteria.

Any of these three approaches might be used when pruning the
tree, but the classification error rate is preferable if prediction accu-
racy of the final pruned tree is the goal.

Let us use the heart data to demonstrate classification trees. The
outcome is AHD: an outcome value of Yes indicates the presence of
heart disease based on an angiographic test, while No means no
heart disease. There are 13 predictors including Age, Sex, Chol (a
cholesterol measurement), and other heart and lung function mea-
surements.

# Read hear data

heart <- read.csv("https://www.statlearning.com/s/Heart.csv", header = TRUE)

# Remove the row numbers, and NAs

heart <- heart[,-1]

heart <- na.omit(heart)

heart$AHD <- as.factor(heart$AHD)

dim(heart)

## [1] 297 14
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head(heart)

## Age Sex ChestPain RestBP Chol Fbs RestECG MaxHR ExAng Oldpeak Slope Ca

## 1 63 1 typical 145 233 1 2 150 0 2.3 3 0

## 2 67 1 asymptomatic 160 286 0 2 108 1 1.5 2 3

## 3 67 1 asymptomatic 120 229 0 2 129 1 2.6 2 2

## 4 37 1 nonanginal 130 250 0 0 187 0 3.5 3 0

## 5 41 0 nontypical 130 204 0 2 172 0 1.4 1 0

## 6 56 1 nontypical 120 236 0 0 178 0 0.8 1 0

## Thal AHD

## 1 fixed No

## 2 normal Yes

## 3 reversable Yes

## 4 normal No

## 5 normal No

## 6 normal No

The textbook demonstrates classification trees using the tree li-
brary. Here, as before, we will use rpart for demonstration. We pro-
ceed in a similar way as we did for regression tree with the only
change is the use of method='class' and parms = list(split =

"information"). The first command specifies the type of problem
(classification), and second command sets the splitting critarion as
cross-entropy.

set.seed(1001)

heart_rpart <- rpart(AHD ~ .,

data = heart,

method='class',

parms = list(split = "information"),

control = rpart.control(xval = 10,

minbucket = 2,

cp = 0))

printcp(heart_rpart)

##

## Classification tree:

## rpart(formula = AHD ~ ., data = heart, method = "class", parms = list(split = "information"),

## control = rpart.control(xval = 10, minbucket = 2, cp = 0))

##

## Variables actually used in tree construction:

## [1] Age Ca ChestPain Chol ExAng Fbs MaxHR

## [8] Oldpeak RestBP RestECG Sex Thal

##

## Root node error: 137/297 = 0.46128
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##

## n= 297

##

## CP nsplit rel error xerror xstd

## 1 0.4890511 0 1.00000 1.00000 0.062708

## 2 0.0510949 1 0.51095 0.55474 0.054891

## 3 0.0401460 3 0.40876 0.45985 0.051426

## 4 0.0218978 5 0.32847 0.45255 0.051125

## 5 0.0145985 7 0.28467 0.47445 0.052012

## 6 0.0109489 9 0.25547 0.48175 0.052297

## 7 0.0097324 12 0.21898 0.48905 0.052578

## 8 0.0072993 15 0.18978 0.48905 0.052578

## 9 0.0054745 17 0.17518 0.51095 0.053390

## 10 0.0036496 27 0.11679 0.52555 0.053909

## 11 0.0000000 29 0.10949 0.54745 0.054652

The Root node error corresponds to 1− NIR, that is, misclassifica-
tion error is we simply assign everything to the majority class.

table(heart$AHD)/nrow(heart)

##

## No Yes

## 0.5387205 0.4612795

In the output above, for easier reading, the error columns have been
scaled8 so that the first node has an error of 1. Using 1-SE rule, we 8 We can multiply the error rates in the

table with Root node error to obtain
the actual error rates. Here rel error

corresponds to training error rate.

chose the tree with three splits, and corresponding tree is shown in
Figure 11.

cp <- heart_rpart$cptable

heart_final <- prune(heart_rpart, cp = cp[3,1])

rpart.plot(heart_final)

Thal = normal

Ca < 1

ChestPain = nonanginal,nontypical,typical

No
0.46

100%

No
0.23
55%

No
0.11
39%

No
0.49
16%

No
0.24
10%

Yes
0.85
7%

Yes
0.75
45%

yes no

Figure 11: Pruned tree using 1-SE rule
for the heart data.

# Training error rate

pred <- predict(heart_final, type = "class")

klaR::errormatrix(true = heart$AHD, predicted = pred,

relative = TRUE)

## predicted

## true No Yes -SUM-

## No 0.7750000 0.2250000 0.2250000

## Yes 0.1459854 0.8540146 0.1459854

## -SUM- 0.3571429 0.6428571 0.1885522
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If we use the cp value corresponding to the minimum CV error
rate, we obtain the following tree, see Figure 12.

heart_final <- prune(heart_rpart, cp = cp[4,1])

rpart.plot(heart_final)

Thal = normal

Ca < 1

ChestPain = nonanginal,nontypical,typical

Ca < 1

ExAng = 0

No
0.46

100%

No
0.23
55%

No
0.11
39%

No
0.49
16%

No
0.24
10%

Yes
0.85
7%

Yes
0.75
45%

Yes
0.54
20%

No
0.33
11%

Yes
0.81
9%

Yes
0.92
25%

yes no

Figure 12: Pruned tree using minimum
cp for the heart data.

# Training error rate using min cp

pred <- predict(heart_final, type = "class")

klaR::errormatrix(true = heart$AHD, predicted = pred,

relative = TRUE)

## predicted

## true No Yes -SUM-

## No 0.9125000 0.0875000 0.0875000

## Yes 0.2262774 0.7737226 0.2262774

## -SUM- 0.6888889 0.3111111 0.1515152

Consider the split Ca < 1 on the right side of the tree. We notice
that regardless of the value of Ca, a response value of Yes is predicted
for those observations. Then why was this node split in the first
place? The reason is that by splitting this node, we get a leaf node
(bottom right of the tree) which is much purer than the original node.
Originally, the parent node has 75% data coming from Yes class.
After splitting, 92% of the bottom right node are from the Yes class.
Suppose that we have a test observation that belongs to the region
given by that right-hand leaf. Then we can be pretty certain that its
response value is Yes. In contrast, if we did not split the orginal node,
and if a test observation falls into the region, then its response value
is probably Yes, but we are much less certain.

Advantages and Disadvantages of Trees

Decision trees for regression and classification have a number of ad-
vantages over the more classical approaches that we have discussed
before. Trees are very easy to explain to people, perhaps even easier
to explain than linear regression! Some people believe that decision
trees more closely mirror human decision-making than do the re-
gression and classification approaches seen in previous chapters. For
example, the tree representation is also popular among medical sci-
entists, perhaps because it mimics the way that a doctor thinks. The
tree stratifies the population into strata of high and low outcome, on
the basis of patient characteristics. One main advantage of trees is
that they can be displayed graphically, and are easily interpreted even
by a non-expert - this is especially true for small trees. Also, trees
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can easily handle categorical predictors without the need to create
dummy variables.

Tree, however, suffer from two main disadvantages. Trees gener-
ally do not have the same level of predictive performance as some
of the other regression and classification approaches we have seen
before. Additionally, trees can be very non-robust; a small change in
the data can cause a large change in the final estimated tree. How-
ever, by aggregating many decision trees, using methods like bagging,
random forests, and boosting, the predictive performance of trees can
be substantially improved.

In general, bagging, random forests, and boosting are part of more
general learning method called ensemble learning. The idea of en-
semble learning is to build a prediction model by combining the
strengths of a collection of simpler base models, called weak learners.
Bagging and random forests are ensemble methods for classification
(can be also applied for regression), where a committee of trees each
cast a vote for the predicted class. Boosting was initially proposed
as a committee method as well, although unlike random forests, the
committee of weak learners evolves over time, and the members cast
a weighted vote. There are other methods, for example Stacking, to
combining the strengths of a number of fitted models. In fact one
could characterize any dictionary method, such as regression splines,
as an ensemble method, with the basis functions serving the role of
weak learners. In the context of the tree-based methods, we discuss
bagging, random forests, boosting, and Bayesian additive regres-
sion trees (BART). These are ensemble methods for which the simple
building block is a regression or a classification tree.

Bagging

We discussed the bootstrap as a way of assessing the accuracy of
a parameter estimate or a prediction, or to estimate test error of a
learning method. Here we use the bootstrap to improve the pre-
diction based on a tree model. Bootstrap aggregation or Bagging is a
general approach that uses bootstrapping in conjunction with any
regression or classification model to construct an ensemble.

Consider the regression problem where we fit a model to our
training data (Y1, X1), . . . , (Yn, Xn), and obtaining the prediction f̂ (x)
at an input x. Bagging averages this prediction over a collection of
bootstrap samples, thereby reducing its variance. For each bootstrap
sample, b = 1, . . . , B of the original data, we fit our model, giving
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prediction f̂ ∗b(x). The bagging estimate is defined by

f̂bag(x) =
1
B

B

∑
b=1

f̂ ∗b(x).

Note that this approach can be taken for any regression model, e.g.,
smoothing splines.

For a regression tree, where f̂ (x) denotes the tree’s prediction at
input vector x. Each bootstrap tree will typically involve different
features than the original, and might have a different number of ter-
minal nodes. The bagged estimate is the average prediction at x from
these B trees. These trees are grown deep, and are not pruned. Hence
each individual tree has high variance, but low bias. Averaging these
B trees reduces the variance. Bagging has been demonstrated to give
impressive improvements in accuracy by combining together hun-
dreds or even thousands of trees into a single procedure.

For a classification tree, each of the B trees will predict a class for
the new observation x. The bagged classifier selects the class with the
most “votes” from the B trees.

There are several packages in R to perform bagging, such as
randomForest and ipred. We ca also use caret for this purpose as
well. Let us demonstrate bagging using the randomForest() function
in the package with the same name. We will use the Hitters data as
used above.

library(randomForest)

set.seed(1001)

hit_bagged <- randomForest(Salary ~ .,

data = Hitters,

mtry = ncol(Hitters)-1,

importance = TRUE)

print(hit_bagged)

##

## Call:

## randomForest(formula = Salary ~ ., data = Hitters, mtry = ncol(Hitters) - 1, importance = TRUE)

## Type of random forest: regression

## Number of trees: 500

## No. of variables tried at each split: 19

##

## Mean of squared residuals: 0.1913966

## % Var explained: 75.7

As we will see shortly, bagging is a special case of random forests,
where instead of scanning through all the predictors, only a random

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu



ST 563 tree-based methods 18

sample of m predictors is chosen when considering a split. The argu-
ment mtry specifies m. Thus bagging is special case of random forests
when m = p. The argument mtry indicates that all 19 predictors
should be considered for each split of the tree—in other words, that
bagging should be done. Now we can predict a new observation by
using the predict() function.

newx <- Hitters[1,]

pred <- predict(hit_bagged, newdata = newx)

pred

## -Alan Ashby

## 6.169975

We can estimate the test error of a bagged model using out-of-
bag (OOB) observations.9 On average, each bagged tree/model uses 9 Recall our discussion about OOB

samples in the chapter about data
splitting methods.

about two-thirds of the training observations. out-of-bag (OOB) ob-
servations refer to the remaining one-third of the observations not
included in the bootstrap sample. Thus the OOB observations can
serve as a test set. We can predict the response for the i-th observa-
tion using each of the trees in which that observation was OOB. This
will yield around B/3 predictions for the i-th observation. In order
to obtain a single prediction for the i-th observation, we can average
these predicted responses (for regression model) or can take a ma-
jority vote (for classification models). This leads to a single OOB pre-
diction for the i-th observation. An OOB prediction can be obtained
in this way for each of the n observations. Now we can estimate the
overall OOB MSE or misclassification rate.
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Figure 13: Estimated test MSE for
different number of aggregated trees.

Figure 13 shows the OOB estimate of test MSE. Notice that the
more trees the better. As we add more trees, we are averaging over
more high variance decision trees. We see a dramatic reduction in
variance early but eventually the reduction in error will slow down.
In our example, after around 100 trees, we do not get much benefit
by averaging more trees.
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Figure 14: Plots of importance mea-
sures.

A disadvantage of bagging is that the resulting model is often
difficult or impossible to interpret, as we are averaging many trees
rather than looking at a single tree. We can still compute variable
importance scores. Using the importance() function, we can view the
importance of each variable. Two measures of variable importance
are reported. The first is based upon the mean decrease of accuracy
in predictions on the out of bag samples when a given variable is
permuted. The second is a measure of the total decrease in node
impurity that results from splits over that variable, averaged over all
trees. In the case of regression trees, the node impurity is measured
by the training RSS, and for classification trees by the deviance. We
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can use the varImpPlot() function to plot these importance metrics.

Random Forests

Random forests provide an improvement over bagging by decorrelat-
ing the trees. Consider the situation where there is one very strong
predictor in the data set, along with a number of other moderately
strong predictors. Then most or all of the trees in the collection of
bagged trees will use the strong predictor in the top split. Thus, all
of the bagged trees will look quite similar to each other, and the pre-
dictions from the bagged trees will be highly correlated. Averaging
many such highly correlated predictions does not lead to much re-
duction in variance. In particular, this means that bagging will not
lead to a substantial reduction in variance over a single tree in this
setting.

Random forests overcome this problem by forcing each split to
consider only a subset of the predictors. As in bagging, we build
a number of decision trees on bootstrapped training samples. But
when building these decision trees, each time a split in a tree is con-
sidered, a random sample of m predictors is chosen as split candi-
dates from the full set of p predictors.10 The split is allowed to use 10 Therefore bagging is a special case of

random forest when m = p.only one of those m predictors. For each split, a new sample of m
predictors is taken at each split, and typically we choose m ≈ √p,
that is, the number of predictors considered at each split is approx-
imately equal to the square root of the total number of predictors.
However, we can treat m as a tuning parameter if needed.

By adopting such a strategy, on average (p − m)/p of the splits
will not even consider the strong predictor, and so other predictors
will have more of a chance. This if how random forest decorrelates
the trees, and thereby making the average of the resulting trees less
variable and hence more reliable.

We use the Hitters data again to demonstrate random forest. We
effectively use the same command as bagging, but with a smaller
value for mtry.

set.seed(1001)

hit_rf <- randomForest(Salary ~ .,

data = Hitters,

mtry = 5,

importance = TRUE)

print(hit_rf)

##

## Call:
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## randomForest(formula = Salary ~ ., data = Hitters, mtry = 5, importance = TRUE)

## Type of random forest: regression

## Number of trees: 500

## No. of variables tried at each split: 5

##

## Mean of squared residuals: 0.1766532

## % Var explained: 77.57

All the diagnostics we presented in the bagging section apply here
as well, including variable importance plot.

Let us look at a classification example using the hearts data.

set.seed(1001)

heart_rf <- randomForest(AHD ~ ., data = heart,

mtry = 4,

importance = TRUE)

print(heart_rf)

##

## Call:

## randomForest(formula = AHD ~ ., data = heart, mtry = 4, importance = TRUE)

## Type of random forest: classification

## Number of trees: 500

## No. of variables tried at each split: 4

##

## OOB estimate of error rate: 19.19%

## Confusion matrix:

## No Yes class.error

## No 136 24 0.1500000

## Yes 33 104 0.2408759
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Figure 15: Variable importance plot of
the hearts data.

Variable importance plots are shown in Figure 15. We can access
the OOB estimates of the errors rate as follows – see Figure 16.

oob_error <- heart_rf$err.rate[,1]

plot(oob_error, type = "l")
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Figure 16: OOB error rates for different
number of trees.

Boosting

Boosting is another way to improve predictions from a decision tree.
Boosting is one of the most powerful learning ideas introduced in the
last twenty years. These models were originally developed for classi-
fication problems and were later extended to the regression setting.
Like bagging, boosting is a general approach that can be applied to
many statistical learning methods for regression or classification.
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In bagging, we create multiple copies of the original training data
set using the bootstrap and then fit a separate decision tree to each
copy, and then combine all of the trees in order to create a single pre-
dictive model. Each tree is built on a bootstrap data set, independent
of the other trees. Boosting works in a similar way, except that the
trees are grown sequentially: each tree is grown using information from
previously grown trees. Boosting does not involve bootstrap sampling;
instead each tree is fit on a modified version of the original data set.

In a way, boosting addressed the bias-variance-tradeoff by starting
with a weak model, for example, a decision tree with only a few splits,
and sequentially improves its performance by continuing to build
new trees. Each new tree attempts to fix the biggest mistakes in the
previous tree in the sequence. For example, each new tree in the
sequence will focus on the training data where the previous tree had
the largest prediction errors. Here are the important components of
boosting:

• The base learners: Technically, we can use boosting on many classi-
fication and regression models. Many boosting applications allow
the user to “plug in” various classes of weak learners at their dis-
posal. In practice however, boosted algorithms almost always use
decision trees as the base-learner.

• Training weak models: We can call a model weak is its performance
is only slightly better than random guessing. The idea behind
boosting is that each model in the sequence slightly improves
upon the performance of the previous one by focusing on the rows
of the training data where the previous tree had the largest errors
or residuals. With regards to decision trees, shallow trees (trees
with relatively few splits) represent a weak learner. In boosting,
trees with 1 - 6 splits are most common.

• Sequential training with respect to errors: Boosted trees are grown
sequentially; each tree is grown using information from previously
grown trees to improve performance. For example, in a regression
problem, each tree is fitted to the previous tree’s residuals, and
added back to the algorithm.

Regression trees

Let us start with boosting a regression tree. The we will move to
classification. Historically, however, boosting for classification (algo-
rithms such as AdaBoost.M1) appeared first. Friedman’s ability to see
boosting’s statistical framework yielded a simple, elegant, and highly
adaptable algorithm for different kinds of problems.11. Friedman 11 Friedman (2001) Greedy Function

Approximation: A Gradient Boosting
Machine. Annals of Statistics, 29(5),
1189–1232.
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named this method gradient boosting machines (GBM) which encom-
passed both classification and regression. The basic principles of
gradient boosting are as follows: given a loss function (e.g., squared
error for regression) and a weak learner (e.g., regression trees), the
algorithm finds an additive model that minimizes the loss function.
The algorithm is initialized with the best guess of the response (e.g.,
the mean of the response in regression, or even zero). The gradient
(e.g., residuals) is calculated, and a model is then fit to the residuals
to minimize the loss function. The current model is added to the pre-
vious model, and the procedure continues for a number of iterations
that the user specified.

The following algorithm performs boosting for regression:

1. Set f̂ (x) = 0 and set the residuals ri = yi for all i in the training
set.

2. For b = 1, 2, . . . , B, repeat:

(a) Fit a tree f̂b with d splits (d + 1 terminal nodes) to the training
data (Xi, ri), i = 1, . . . , n.

(b) Update f̂ (x) by adding in a shrunken version of the new tree:

f̂ (x)← f̂ (x) + λ f̂b(x).

(c) Update the residuals,

ri ← ri − λ f̂b(Xi).

3. Output the boosted model,

f̂ (x) =
B

∑
i=1

λ f̂b(x).

Unlike fitting a single large decision tree to the data, which amounts
to fitting the data hard and potentially overfitting, the boosting ap-
proach instead learns slowly. We fit a tree using the current residuals,
rather than the outcome, Y, as the response. We then add this new
decision tree into the fitted function in order to update the residu-
als. The size of each of these trees is determined by the parameter
d in the algorithm. By fitting small trees to the residuals, we slowly
improve f̂ in areas where it does not perform well. The shrinkage
parameter λ slows the process down even further, allowing more and
different shaped trees to attack the residuals.12 Note that in boosting, 12 In general, statistical learning ap-

proaches that learn slowly tend to
perform well.

unlike in bagging, the construction of each tree depends strongly on
the trees that have already been grown.

Boosting for regression has three tuning parameters:
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1. The number of trees B: Unlike bagging and random forests, boosting
can overfit if B is too large, although this overfitting tends to occur
slowly if at all. We use cross-validation to select B.

2. The shrinkage parameter λ: This is a small positive number. This
controls the rate at which boosting learns. Typical values are 0.01
or 0.001. However, and the right choice can depend on the prob-
lem. Very small λ can require using a very large value of B in
order to achieve good performance.

3. The number d of splits in each tree: This which controls the complex-
ity of the boosted ensemble. Often d = 1 works well, in which
case each tree is a stump, consisting of a single split. In this case,
the boosted ensemble is fitting an additive model, since each term
involves only a single variable. More generally d is the interaction
depth, and controls the interaction order of the boosted model,
since d splits can involve at most d variables.

Let us look at a simple example of a regression problem with one
predictor:

Yi = sin(Xi) + εi,

where Xi takes values between −π and π, and εi ∼ (0, 0.25). Figure
17 shows how gradient boosting proceeds with estimate the true un-
derlying function. The upper left panel (“Single tree”) shows the es-
timated function based on a single tree pruned using cost-complexity
pruning. The second plot of the first row (B = 0) shows the initializa-
tion for gradient boosting, that is, f̂ (x) = 0. Thereafter, B indicates
the number of trees grown sequentially. The first tree fit in the series
is a single decision stump, i.e., a tree with a single split. After that,
each successive decision stump is fit to the previous three’s residuals.
Initially there are large errors, but each additional decision stump in
the sequence makes a small improvement in different areas across the
feature space where errors still remain. We also notice that after some
point (e.g., B = 1000), the procedure shows signs of overfitting. Thus
it is important to tune the parameter B.

After Friedman published his gradient boosting machine, he up-
dated the boosting machine algorithm with a random sampling
scheme. Typically, such a random selection approach reduces the
prediction variance. The new procedure is called stochastic gradient
boosting13. To be specific, a subsample of the training data is drawn 13 Friedman (2002) Stochastic Gradient

Boosting. Computational Statistics &
Data Analysis 38 (4). Elsevier: 367-78.

at random without replacement at each iteration, and used in place
of the full training data. Fitting the base learner and computing the
model update for the current iteration is done only based on this
subsample. The fraction of training data used, known as the bagging
fraction. This becomes another tuning parameter for the model. It
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Figure 17: Demonstration of GBM using
simulated data and different number of
B.

turns out that this simple modification improved the prediction ac-
curacy of boosting while also reducing the required computational
resources. Friedman suggests using a bagging fraction of around 0.5.
This value, however, can be tuned like any other parameter. There are
a few variants of stochastic GBMs that can be used, often requiring
additional hyperparameters:

• Subsample rows (traing observations) before creating each tree
(available in gbm, h2o, and xgboost)

• Subsample columns (predictors) before creating each tree (avail-
able in h2o, and xgboost)

• Subsample columns (predictors) before considering each split in
each tree (available in h2o and xgboost)

While the fraction of rows taken as a subsample (i.e., bagging frac-
tion) is set at 0.5, but typical values range from 0.5 to 0.8. Subsam-
pling of predictors and the impact to performance largely depends
on the nature of the data and if strong multicollinearity or a lot of
noisy features present in the data. When there are many relevant
predictors, a lower values of predictor subsampling tends to perform
well.

In R, the most widely used package for boosting regression trees
via stochastic gradient boosting machines is gbm.14 14 gbm has two training functions: gbm()

and gbm.fit(). The primary difference
is that gbm() uses the formula inter-
face to specify your model whereas
gbm.fit() requires the separated x and
y matrices. gbm.fit() is more efficient
and recommended for advanced users.

library(gbm)

set.seed(1001)

hit_gbm1 <- gbm(

formula = Salary ~ .,

data = Hitters,

distribution = "gaussian",

n.trees = 1000,
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shrinkage = 0.1*2,

interaction.depth = 3,

n.minobsinnode = 10,

cv.folds = 5

)

Here we have fit a gradient boosting model with the RSS loss (dis-
tribution = “gaussian”), 5000 sequentially generated trees (n.trees =
5000), λ = 0.1 (shrinkage = 0.1), d = 3 (interaction.depth = 3), and
tree control parameter is the minimum number of observations in a
node to be 10 (n.minobsinnode = 10). We also specified use of 10-fold
CV (cv.folds = 10) to estimate test error rate. By default, the bagging
fraction is taken to be 0.5 (bag.fraction = 0.5 is not specified as it is
default).

print(hit_gbm1)

## gbm(formula = Salary ~ ., distribution = "gaussian", data = Hitters,

## n.trees = 1000, interaction.depth = 3, n.minobsinnode = 10,

## shrinkage = 0.1 * 2, cv.folds = 5)

## A gradient boosted model with gaussian loss function.

## 1000 iterations were performed.

## The best cross-validation iteration was 13.

## There were 19 predictors of which 16 had non-zero influence.
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Figure 18: CV error vs number of trees
in GBM

# Best number of trees with min CV error

best <- which.min(hit_gbm1$cv.error)

best

## [1] 13

# get MSE

hit_gbm1$cv.error[best]

## [1] 0.2372428

We can also use gbm.perf() function to plot the CV errors as well as
training errors.

gbm.perf(hit_gbm1, method = "cv")
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Figure 19: Training (black) and test
errors (green) for GBM fit on ‘Hitters‘
data.

## [1] 13

We can also tune for parameters either manually, or using caret,
as we show below. Here shrinkage is the learning rate λ.
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set.seed(1001)

gr <- expand.grid(shrinkage = c(0.3, 0.1, 0.05, 0.01, 0.005),

interaction.depth = c(1,2,3),

n.trees = seq(100, 3000, by=100),

n.minobsinnode = 10)

caret_gbm <- train(Salary ~ .,

data = Hitters,

method = "gbm",

trControl = trainControl(method = "cv",

number = 5),

tuneGrid = gr,

verbose = FALSE)

plot(caret_gbm)

# Boosting Iterations

R
M

S
E

 (
C

ro
ss

−
V

al
id

at
io

n)

0.45

0.50

0.55

0.60

0.65

0.70

0 500 1000 1500 2000 2500 3000

interaction depth: 1

0 500 1000 1500 2000 2500 3000

interaction depth: 2

0 500 1000 1500 2000 2500 3000

interaction depth: 3

Shrinkage
0.005
0.01

0.05
0.1

0.3

Figure 20: Tuning gradient boosting
machine using caret.

# best parameters

best <- which.min(caret_gbm$results$RMSE)

caret_gbm$results[best,]

## shrinkage interaction.depth n.minobsinnode n.trees RMSE Rsquared

## 51 0.005 2 10 2100 0.4586201 0.7291873

## MAE RMSESD RsquaredSD MAESD

## 51 0.3214669 0.1068343 0.1475975 0.04424383

XGBoost

Another efficient and flexible gradient boosting library is extreme
gradient boosting (XGBoost). It is optimized for distributed comput-
ing and portable across multiple languages such as R, Python, Julia,
Scala, Java, and C++. XGBoost also provides a few advantages over
traditional boosting:

• Regularization: XGBoost offers additional regularization tech-
niques that provides added protection against overfitting.

• Early stopping: XGBoost implements early stopping so that we can
stop model assessment when additional trees offer no improve-
ment.

• Loss functions: XGBoost allows users to define and optimize gra-
dient boosting models using custom objective and evaluation
criteria.
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• Continue with existing model: A user can train an XGBoost model,
save the results, and later on return to that model and continue
building onto the results.

• Different base learners: XGBoost also provides boosted general-
ized linear models.

XGboost can be implemented multiple ways within R: using xgboost

package, using caret as a meta engine, and also using h2o package.
Although we discussed the most popular GBM algorithms, there

are alternative algorithms such as LightGBM15 and CatBoost16. Light- 15 Ke, Guolin, Qi Meng, Thomas Finley,
Taifeng Wang, Wei Chen, Weidong
Ma, Qiwei Ye, and Tie-Yan Liu. 2017.
Lightgbm: A Highly Efficient Gradient
Boosting Decision Tree. In Advances in
Neural Information Processing Systems,
3146-54.
16 Dorogush, Anna Veronika, Vasily
Ershov, and Andrey Gulin. 2018.
CatBoost: Gradient Boosting with
Categorical Features Support. arXiv
Preprint arXiv:1810.11363.

GBM is a gradient boosting framework that focuses on leaf-wise tree
growth versus the traditional level-wise tree growth. As a tree is
grown deeper, it focuses on extending a single branch versus growing
multiple branches. CatBoost develops efficient methods for encoding
categorical features during the gradient boosting process.

Classification tree

Several boosting algorithms appeared in early 1900’s, such as, Schapire
(1990)17 and Freund (1995)18 that implement the original theory of 17 Schapire R (1990). The Strength of

Weak Learnability. Machine Learning,
45, 197–227.
18 Freund Y (1995) Boosting a Weak
Learning Algorithm by Majority.
Information and Computation, 121,
256–285.

boosting a classification tree. Freund and Schapire (1996) and later
Freund and Schapire (1996)19 finally provided the first practical

19 Freund, Y. and Schapire, R. (1997).
A decision-theoretic generalization of
online learning and an application to
boosting, Journal of Computer and
System Sciences 55: 119-139.

implementation of boosting theory in their famous AdaBoost/Ad-
aBoost.M1 algorithm.

Consider a two-class problem, with the output variable Y coded
as −1 and 1. Given a vector of predictor variables X, a classifier,
G(X) produces a prediction taking one of the two values −1 and 1.
Recall that a weak classifier is one whose error rate is only slightly
better than random guessing. Boosting in classification works by
sequentially applying the weak classification algorithm to repeatedly
modified versions of the data, thereby producing a sequence of weak
classifiers, G1(X), . . . , GM(X). The predictions from all of them are
then combined through a weighted majority vote to produce the final
prediction:

G(X) = sign (α1G1(X) + . . . + αMGM(X)) .

Here α1, . . . , αM are computed by the boosting algorithm, and weight
the contribution of each respective weak classifier. Their effect is to
give higher influence to the more accurate classifiers in the sequence.
The data modifications at each boosting step consist of applying
weights w1, . . . , wn to each of the training observations (Xi, Yi), i =

1, . . . , n. Initially, we take all of the weights to be wi = 1/n. Thus the
first step simply trains the classifier on the data in the usual manner.
Then for iteration m = 2, . . . , M, the algorithm modifies the weights
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so that the misclassified observation in step m− 1 have their weights
increased whereas the weights are decreased for those that were
classified correctly. The classification algorithm is reapplied to the
weighted observations. Thus as we go through more iterations, obser-
vations that are difficult to classify correctly receive ever-increasing
influence. Each successive classifier is thereby forced to concentrate
on those training observations that are missed by previous ones in
the sequence.

The details of the AdaBoost.M1 algorithm is below.

1. Initialize the observation weights wi = 1/n, i = 1, . . . , N.

2. For m = 1 to M:

(a) Fit a classifier to the training data using weights wi, and obtain
predictions Ĝm(X1), . . . , Ĝm(Xn).

(b) Compute the misclassification error rate

errm =
n

∑
i=1

wi I(Yi 6= Ĝm(Xi))/
n

∑
i=1

wi.

(c) Compute αm = log[(1− errm)/errm].

(d) Set wi ← wi exp[αm I(Yi 6= Gm(Xi))], i = 1, . . . , N.

3. Output G(X) = sign (α1G1(X) + . . . + αMGM(X)) . for any new
observation X.

The AdaBoost.M1 algorithm is known as “Discrete AdaBoost” in
Friedman et al. (2000), because the base classifier returns a discrete
class label. If the base classifier instead returns a real-valued predic-
tion (e.g., a probability), AdaBoost can be modified appropriately, see
“Real AdaBoost” in Friedman et al. (2000).

Notice that the algorithm above can take any base classifier, not
just classification tree. However, decision trees are an ideal base
learner for data mining applications of boosting due to various ad-
vantages such as their natural handling of mixed (numerical and
categorical) data, handling of missing values, robustness to outliers
and monotone transformations in input space, computational scal-
ability for large n and so on. As with the regression setting, when
trees are used as the base learner, we have two tuning parameters:
tree depth (or interaction depth), d and number of iterations, M. We
can also adapt gradient boosting for classification using a general
loss function such as the Bernoulli distribution, where we model the
odds.
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The primary boosted tree package in R is gbm, which implements
stochastic gradient boosting. The primary difference between boost-
ing regression and classification trees is the choice of the distribu-
tion of the data. The gbm function can only accommodate two class
problems and using distribution = "bernoulli" is an appropriate
choice here. Another option is distribution = "adaboost" to repli-
cate the loss function used by that methodology. One complication
when using gbm for classification is that it expects that the outcome is
coded as 0/1.

heart <- read.csv("https://www.statlearning.com/s/Heart.csv", header = TRUE)

# Remove the row numbers, and NAs

heart <- heart[,-1]

heart <- na.omit(heart)

heart$AHD <- ifelse(heart$AHD == "Yes", 1, 0)

heart$ChestPain <- as.factor(heart$ChestPain)

heart$Thal <- as.factor(heart$Thal)

dim(heart)

## [1] 297 14

set.seed(1001)

heart_ada <- gbm(AHD ~ ., data = heart,

distribution = "adaboost",

interaction.depth = 1,

n.trees = 1500,

shrinkage = 0.01,

verbose = FALSE,

cv.folds = 5)

gbm.perf(heart_ada)
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Figure 21: Test error estimated by CV
for hearts data using adaboost loss.

## [1] 761

summary(heart_ada)
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Figure 22: Relative incluence of
preecitors in reducing the loss func-
tion in hearts data using adaboost
loss.

## var rel.inf

## ChestPain ChestPain 17.1945328

## Thal Thal 16.2746756

## Ca Ca 16.2185685

## Oldpeak Oldpeak 11.6460202

## Age Age 7.5651527

## MaxHR MaxHR 6.8791140

## Chol Chol 6.2987601
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## RestBP RestBP 6.2336475

## Sex Sex 3.7340304

## Slope Slope 3.4090655

## ExAng ExAng 3.2718838

## RestECG RestECG 1.0615683

## Fbs Fbs 0.2129807

We can also use “bernoulli” loss and stochastic GBM.

set.seed(1001)

heart_gbm <- gbm(AHD ~ ., data = heart,

distribution = "bernoulli",

interaction.depth = 1,

n.trees = 1500,

shrinkage = 0.01,

verbose = FALSE,

cv.folds = 5)

gbm.perf(heart_gbm)
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Figure 23: Test error estimated by CV
for hearts data using bernoulli loss.

## [1] 977

summary(heart_gbm)
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Figure 24: Relative incluence of
preecitors in reducing the loss func-
tion in hearts data using bernoulli
loss.

## var rel.inf

## ChestPain ChestPain 19.0881047

## Thal Thal 18.9221487

## Ca Ca 18.0450914

## Oldpeak Oldpeak 10.1864796

## MaxHR MaxHR 6.3337764

## Age Age 6.0669566

## RestBP RestBP 5.0320954

## Chol Chol 4.2931006

## Slope Slope 4.0085639

## ExAng ExAng 3.8265112

## Sex Sex 2.8913726

## RestECG RestECG 0.9674834

## Fbs Fbs 0.3383156

The original AdaBoost algorithm is available in the ada package.
Another function for boosting trees is blackboost in the mboost pack-
age. This package also contains functions for boosting other types of
models (such as logistic regression) as does the bst package.
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Stacking

Stacked generalization or Stacking20 involves training a new learning 20 Wolpert, D. (1992). Stacked general-
ization, Neural Networks 5: 241-259.algorithm to combine the predictions of several base learners. First,

we train the base learners using training data. Then a combiner,
called the meta model, is trained to make a final prediction based on
the predictions of the base learners. It is shown that such stacked
ensembles tend to outperform any of the individual base learners.
Although the original idea was due to Wolpert, Breiman21 formalized 21 Breiman, Leo. 1996b. Stacked Re-

gressions. Machine Learning 24 (1).
Springer: 49-64.

stacking – the modern form of stacking that uses internal k-fold CV
was Breiman’s contribution. The theoretical background for stacking
was developed in 2007, and the algorithm took on the name Super
Learner22. The article illustrated that super learners will learn an op- 22 Van der Laan, Polley, and Hubbard

(2007) Super Learner. Statistical Ap-
plications in Genetics and Molecular
Biology 6 (1).

timal combination of the base learner predictions and will typically
perform as well as or better than any of the individual models that
make up the stacked ensemble.

Unlike boosting, which combines several weak learners, stacking is
designed to ensemble a diverse group of strong learners. Here, instead
of a sequence of models, a single model is used to learn how to best
combine the predictions from different base models in consideration.
The super learner algorithm consists of three phases:

1. Setting up the ensemble:

• Here we specify a list of L base learners with a specific set of
model parameters.23 23 Sometimes these are called level-0

models.
• We also specify a meta learning algorithm – This can be any one

of the algorithms discussed before but most often is some form
of regularized regression.24 24 Sometimes this model called level-1

model.

2. Train the ensemble:

• Next we train each of the L base learners on the training set.
Usually, we perform cross-validation25 on each of the base 25 Bootstrap based algorithms are also

availablelearners and collect the cross-validated (out of fold) predictions
from each learner and for each training observation. The same
folds must be used for each base learner.

• We form a new n × L feature matrix by collecting all n cross-
validated predicted values from each of the L learners. The
original response vector, Y, and the new feature matrix are
together called the level-one data.

• Next we train the combiner/meta learning algorithm on the
level-one data. Thus the “ensemble model” consists of the L
base learning models and the meta learning model, which we
can used to generate predictions on new data.
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3. Prediction for new data:

• We generate ensemble predictions by first generating predic-
tions from the base learners, and then use those predictions as
inputs for the meta learner to generate the ensemble prediction.

Stacking never does worse than selecting the single best base learner
on the training data, but not necessarily the validation or test data.
The biggest gains are usually produced when stacking base learners
that have high variability, and uncorrelated, predicted values. The
more similar the predicted values are between the base learners, the
less advantage there is to combining them.

We demonstrate stacking using h2o package. However, there are
many other available packages such as SuperLearner, subsemble, and
caretEnsemble.

The first approach to stacking is to train individual base learner
models separately and then stack them together. For example, let us
look at the Hitters data.

Hitters <- na.omit(ISLR2::Hitters)

Hitters$Salary <- log(Hitters$Salary)

Some initial steps are needed to start h2o. We will also split the
data to create a holdout set for testing purposes. This is step is done
purely to estimate the test errors.

library(h2o)

# Create train/test sets

set.seed(1001)

split <- rsample::initial_split(Hitters, strata = "Salary", prop = 0.8)

Hitters_train <- rsample::training(split)

Hitters_test <- rsample::testing(split)

# Get response and feature names

Y <- "Salary"

X <- setdiff(names(Hitters_train), Y)

# Init h2o

h2o.init()

# Convert train/test sets to h2o format

Hitters_train <- as.h2o(Hitters_train)

Hitters_test <- as.h2o(Hitters_test)

Now we want to stack three base models: linear regression with
lasso penalty, random forest, and regression gradient boosting. We
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first run the base learners on the data using 5-fold CV. Recall, we
must use the same folds for all the three models. In the code chunk
below, alpha = 1 indicates lasso penalty, nfolds = 5 for 5-fold CV,
fold_assignment = "Modulo" is to ensure that all models must use
the same fold assignment, and keep_cross_validation_predictions

= TRUE ensures that the cross-validated predictions from all of the
models must be preserved.

nfolds <- 5

seed <- 123

# Lasso

hit_glm <- h2o.glm(

x = X, y = Y, training_frame = Hitters_train,

nfolds = nfolds, seed = seed,

keep_cross_validation_predictions = TRUE,

fold_assignment = "Modulo",

alpha = 1, remove_collinear_columns = TRUE

)

# Random forest

hit_rf <- h2o.randomForest(

x = X, y = Y, training_frame = Hitters_train,

nfolds = nfolds, seed = seed,

keep_cross_validation_predictions = TRUE,

fold_assignment = "Modulo",

ntrees = 1000, mtries = 5, max_depth = 30,

sample_rate = 0.8, stopping_rounds = 50,

stopping_metric = "RMSE", stopping_tolerance = 0

)

# GBM

hit_gbm <- h2o.gbm(

x = X, y = Y, training_frame = Hitters_train,

nfolds = nfolds, seed = seed,

keep_cross_validation_predictions = TRUE,

fold_assignment = "Modulo",

ntrees = 5000, learn_rate = 0.01,

max_depth = 7, min_rows = 5, sample_rate = 0.8,

stopping_rounds = 50, stopping_metric = "RMSE",

stopping_tolerance = 0

)

The next step is to use h2o.stackedEnsemble() to stack the models
above. There are several choice of meta models available, such as,
GLM with non-negative weights, deep learning, random forest, stan-
dard GLM and so on. We will use GLM with non-negative weights
(in this case a linear regression with non-negative coefficients) by
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setting metalearner_algorithm = "AUTO".

hit_ensemble <- h2o.stackedEnsemble(

x = X, y = Y, training_frame = Hitters_train,

model_id = "hitters_ensemble",

base_models = list(hit_glm, hit_rf, hit_gbm),

metalearner_algorithm = "AUTO"

)

Let us examine the test RMSE of the base models and the stacked
model. We can use h2o.performance() function. Note that the out-
put is not a standard list or data frame, and we require the @ operator
to extract its components.

# Function to extract rmse

get_rmse <- function(model){

perf <- h2o.performance(model,

newdata = Hitters_test)

return(perf@metrics$RMSE)

}

# model list

mod_list <- list(GLM = hit_glm, RF = hit_rf,

GBM = hit_gbm, STACK = hit_ensemble)

# apply function to model list

purrr::map_dbl(mod_list, get_rmse)

## GLM RF GBM STACK

## 0.4906867 0.2785704 0.2700380 0.2815641

It seems in this example, stacking did not provide any gain over the
base learners random forest and gradient boosting on the test set. By
comparing the predictions of the three model (see Figure 25), we see
that they are quite correlated – random forest and gradient boosting
predictions have a correlation of 96.4% and which GLM has correla-
tion about 74% with the other two methods. Consequently, stacking
provides less advantage in this situation since the base learners have
highly correlated predictions. The biggest gains are usually produced
when we are stacking base learners that have high variability, and
uncorrelated, predicted values.

# Compare predictions

pred <- data.frame(

GLM_pred = as.vector(h2o.getFrame(hit_glm@model$cross_validation_holdout_predictions_frame_id$name)),

RF_pred = as.vector(h2o.getFrame(hit_rf@model$cross_validation_holdout_predictions_frame_id$name)),

GBM_pred = as.vector(h2o.getFrame(hit_gbm@model$cross_validation_holdout_predictions_frame_id$name))
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)

cor(pred)

## GLM_pred RF_pred GBM_pred

## GLM_pred 1.0000000 0.7479203 0.7381802

## RF_pred 0.7479203 1.0000000 0.9622414

## GBM_pred 0.7381802 0.9622414 1.0000000

plot(pred)
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Figure 25: Comparison of predictions of
the three base models.

An alternative ensemble approach focuses on stacking multiple
models generated from the same base learner. Often we simply select
the best performing tuning parameters in a grid search when we
build a model. We can also apply the concept of stacking to this
process. The process is similar to that shown above. As discussed
before, stacking the grid search or even the best models in the grid
search can provide significant performance gains when we see high
variability across hyperparameter settings.

Bayesian additive regression trees

Like other ensemble methods discussed so far, Bayesian additive
regression trees (BART) relies on a collection of trees to form a pre-
diction. However, BART uses Bayesian methodology and builds upon
earlier research on Bayesian methods for CART26. In BART, each tree 26 Chipman HA, George EI, McCul-

loch RE (1998). Bayesian CART Model
Search. Journal of the American Statisti-
cal Association, 93(443), 935-948.

is constructed in a random manner as in bagging and random forests,
and each tree tries to capture signal not yet accounted for by the cur-
rent model, as in boosting. The main novelty in BART is the way in
which new trees are generated.

Let us start with a continuous outcome and regression problem.
To start with, let us introduce some notations:

K = number of regression trees,

B = number of iterations for which the BART algorithm will be run,

f̂ b
k (x) = prediction at x for the k-th regression tree used in the b-th iteration,

f̂ b(x) =
K

∑
k=1

f b
k (x), prediction of the b-th iteration.

In the first iteration of the BART algorithm, all trees are initialized
to have a single root node, with f̂ 1

k (x) = ∑n
i=1 Yi/(nK), and conse-

quently f̂ b(x) = ∑n
i=1 Yi/n. In subsequent iterations, BART updates

each of the K trees, one at a time. In the b-th iteration, to update the
k-th tree, we subtract from each response value the predictions from
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all but the k-th tree, in order to obtain a partial residual for each ob-
servation,

ri = Yi −∑
j<k

f̂ b
j (Xi)−∑

j>k
f̂ b−1
j (Xi).

However, we do not fit a fresh tree to this partial residual. Instead,
BART randomly chooses a perturbation to the tree from the previous
iteration from a set of possible perturbations. There are two compo-
nents to this perturbation:

• We may change the structure of the tree by adding or pruning
branches.

• We may change the prediction in each terminal node of the tree.

We favor the ones that improve the fit to the partial residual. The
following figure illustrates examples of possible perturbations to a
tree.
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(a) Original (b) Same shape, different prediction (c) Pruning (d) Adding branches
The left panel (panel (a)) in the figure is the k-th tree in iteration
b − 1. The remaining panels are possible perturbations of this tree
that can be chosen in iteration b as the k-th tree. One possibility is
that the new tree has the same structure as the previous tree, but
with different predictions at the terminal nodes (panel (b)). Another
possibility is that the new tree is obtained from pruning the previous
tree (panel (c)). Yet another option is that the new tree may have
more terminal nodes than the old tree (panel (d).

After B iterations, we have a collection of prediction models, f̂ b(x).
Typically, models obtained in the first few iterations tend to not per-
form well, we typically throw away the first few prediction models.
In Bayesian literature, this is known as the burn-in period. Then,
to obtain a single prediction, we simply take the average (or other
quantities such as percentiles, a measure of uncertainty in the final
prediction) after the burn-in iterations. Formally, if we throw away
the first L iterations as burn-in, out final prediction for input x would
be

f̂ (x) =
1

B− L

B

∑
b=L+1

f̂ b(x).

A key element of the BART approach is that we do not fit a fresh
tree to the current partial residual: instead, we try to improve the fit
to the current partial residual by slightly modifying the tree obtained
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in the previous iteration. Roughly speaking, this guards against
overfitting since it limits how “hard” we fit the data in each iteration.
Furthermore, the individual trees are typically quite small. We limit
the tree size in order to avoid overfitting the data, which would be
more likely to occur if we grew very large trees.

The code chunk below shows BART fit to the Hitters data using
the BART package.27 There are other packages such as bartMachine, 27 See ?wbart for details.

which is also supported by caret.

library(BART)

set.seed(1001)

hit_bart <- wbart(x.train = Hitters[,-19], y.train = Hitters$Salary,

ntree = 200, ndpost = 1000, nskip = 200)

## *****Into main of wbart

## *****Data:

## data:n,p,np: 263, 22, 0

## y1,yn: 0.236093, 0.980534

## x1,x[n*p]: 315.000000, 0.000000

## *****Number of Trees: 200

## *****Number of Cut Points: 100 ... 1

## *****burn and ndpost: 200, 1000

## *****Prior:beta,alpha,tau,nu,lambda: 2.000000,0.950000,0.063565,3.000000,0.073304

## *****sigma: 0.613451

## *****w (weights): 1.000000 ... 1.000000

## *****Dirichlet:sparse,theta,omega,a,b,rho,augment: 0,0,1,0.5,1,22,0

## *****nkeeptrain,nkeeptest,nkeeptestme,nkeeptreedraws: 1000,1000,1000,1000

## *****printevery: 100

## *****skiptr,skipte,skipteme,skiptreedraws: 1,1,1,1

##

## MCMC

## done 0 (out of 1200)

## done 100 (out of 1200)

## done 200 (out of 1200)

## done 300 (out of 1200)

## done 400 (out of 1200)

## done 500 (out of 1200)

## done 600 (out of 1200)

## done 700 (out of 1200)

## done 800 (out of 1200)

## done 900 (out of 1200)

## done 1000 (out of 1200)

## done 1100 (out of 1200)

## time: 4s

## check counts
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## trcnt,tecnt,temecnt,treedrawscnt: 1000,0,0,1000

# Variable importance

sort(hit_bart$varcount.mean)

## CRuns CWalks CHmRun CAtBat Hits CHits AtBat

## 6.524 7.744 7.762 8.839 9.117 9.222 9.285

## Errors CRBI Runs PutOuts League2 Assists Walks

## 9.810 10.037 10.070 10.324 10.634 10.773 10.893

## RBI NewLeague1 HmRun Division1 NewLeague2 League1 Division2

## 11.010 11.074 11.099 11.244 11.299 11.356 11.615

## Years

## 14.593

We can also use predict() function to generate predictions for new
data.

Summary and Discussion

In this section, we discussed regression and classification trees using
the CART approach. Also, we discussed about several ensemble
learning methods.

• In bagging, we grow the trees independently on bootstrap samples
of the observations. These trees tend to be quite similar to each
other and hence bagging can get caught in local optima. In other
words, bagging can fail to thoroughly explore the model space.

• In random forests, we grow the trees independently on bootstrap
samples of the observations with the added step that each split on
each tree is performed using a random subset of the features. This
is done to decorrelate the trees, and to obtain a more thorough
exploration of model space relative to bagging.

• In boosting, we only use the original data, and do not draw any
bootstrap samples. The trees are grown successively, using a
slow learning approach, governed by the learning rate. Each new
tree is fit to the signal that is left over from the earlier trees, and
shrunken down before it is used.

• In stacking, we again use only the original data, and do not draw
any random samples. Unlike boosting, we combine several strong
learners (base models) using a meta algorithm (meta model) by
using the predictions from the base models as input to the meta
model.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu



ST 563 tree-based methods 39

• In BART, we once again only make use of the original data, and
we grow the trees successively. However, each tree is perturbed in
order to avoid local minima and achieve a more thorough explo-
ration of the model space.

There are other methods we have not covered in this chapter, but
are also important. We briefly mention them in the following sec-
tions.

Regression Model Trees

One limitation of simple regression trees is that each terminal node
uses the average of the training set outcomes in that node for pre-
diction. Thus, these models may produce inaccurate predictions for
samples whose true outcomes are extremely high or low. Quinlan28 28 Quinlan R (1992). Learning with

Continuous Classes. Proceedings of
the 5th Australian Joint Conference On
Artificial Intelligence, pp. 343-348.

describes the model tree approach, called M5, which is similar to re-
gression trees with the follows changes:

• The splitting criterion is different.

• The terminal nodes predict the outcome using a linear model as
opposed to the simple average.

• When prediction of performed for a sample, it is often a combina-
tion of the predictions from different models along the same path
through the tree.

Model trees also incorporate a type of smoothing to decrease the
potential for over-fitting. The technique is based on the recursive
shrinking methodology of Hastie and Pregibon (1990)29. When pre- 29 Hastie T, Pregibon D (1990). Shrink-

ing Trees. Technical report, AT&T Bell
Laboratories Technical Report.

dicting, the new sample travels down the appropriate path of the
tree, and moving from the bottom up, the linear models along that
path are combined using a specific mathematical formula. This type
of smoothing can have a significant positive effect on the model tree
when the linear models across nodes are very different, which can
happen due to small training set or multicollinearity.

Rule based approach

A rule is defined as a distinct path through a tree. For the tree, a new
sample can only travel down a single path through the tree defined
by these rules. The number of samples affected by a rule is called its
coverage. In addition to the pruning algorithms described in the last
section, the complexity of the model tree can be further reduced by
either removing entire rules or removing some of the conditions that
define the rule.
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Consider the rule in Figure 9 that represents the second leaf node
from left.

cAtBat < 1452 & CHits < 182 & cHits < 26

In the rule above, note that the CHits variable is used twice. This
occurred because another path through the tree determined that
modeling the data subset where CHits is between 26 and 182 was
important. However, when viewed in isolation, the rule above is
unnecessarily complex because of this redundancy. In general, it may
be advantageous to remove some conditions in a rule because they
do not contribute much to the model.

Quinlan30 describes methodologies for simplifying the rules gener- 30 Quinlan R (1993). C4.5: Programs for
Machine Learning. Morgan Kaufmann
Publishers.

ated from classification trees – this algorithm is for tree is called C4.5,
and the rule based method is called C4.5Rules. Similar techniques
can be applied to model trees to create a more simplistic set of rules
from an initial model tree. We also have C5.0, which is a advanced
version of C4.5. C5.0 also has a rule based variant.

The model tree and rule based approaches are available in the
RWeka package: M5P() and M5Rules() function for model trees and
rule based models, and J48() function for C4.5 classifier. The C5.0
algorithm is available in C50 package. Other RWeka functions for
rules can be found on the help page ?Weka_classifier_rules.

library(RWeka)

hit_m5 <- M5P(Salary ~ ., data = Hitters,

control = Weka_control(M=10))

hit_m5

## M5 pruned model tree:

## (using smoothed linear models)

##

## CAtBat <= 1452 :

## | CHits <= 182 :

## | | RBI <= 21.5 : LM1 (12/79.24%)

## | | RBI > 21.5 : LM2 (44/18.261%)

## | CHits > 182 :

## | | AtBat <= 465 : LM3 (33/25.466%)

## | | AtBat > 465 : LM4 (14/18.802%)

## CAtBat > 1452 :

## | Hits <= 117.5 : LM5 (70/50.132%)

## | Hits > 117.5 :

## | | CRBI <= 273 : LM6 (20/48.255%)

## | | CRBI > 273 : LM7 (70/38.212%)

##
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## LM num: 1

## Salary =

## -0.0009 * AtBat

## + 0.0017 * Hits

## + 0.0014 * Runs

## - 0.0047 * RBI

## - 0.0267 * Walks

## + 0.0067 * Years

## + 0.0001 * CAtBat

## - 0.0021 * CHits

## + 0.0003 * CHmRun

## + 0.007 * CRBI

## - 0.0001 * CWalks

## + 0.0003 * PutOuts

## + 5.2312

##

## LM num: 2

## Salary =

## -0.0009 * AtBat

## + 0.0017 * Hits

## + 0.0014 * Runs

## - 0.0021 * RBI

## + 0.0027 * Walks

## + 0.0067 * Years

## + 0.0001 * CAtBat

## + 0.0005 * CHits

## + 0.0003 * CHmRun

## + 0.0059 * CRBI

## - 0.0001 * CWalks

## + 0.0002 * PutOuts

## + 4.3843

##

## LM num: 3

## Salary =

## -0.0016 * AtBat

## + 0.0027 * Hits

## + 0.0027 * Runs

## + 0.0013 * Walks

## + 0.0067 * Years

## + 0.0003 * CAtBat

## + 0.0001 * CHits

## + 0.0003 * CHmRun

## + 0.0029 * CRBI

## - 0.0001 * CWalks
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## + 0.0001 * PutOuts

## + 4.9154

##

## LM num: 4

## Salary =

## -0.002 * AtBat

## + 0.0051 * Hits

## + 0.0034 * Runs

## + 0.0013 * Walks

## + 0.0067 * Years

## + 0.0004 * CAtBat

## + 0.0001 * CHits

## + 0.0003 * CHmRun

## + 0.0005 * CRBI

## - 0.0001 * CWalks

## + 0.0001 * PutOuts

## + 4.767

##

## LM num: 5

## Salary =

## -0.0003 * AtBat

## + 0.0014 * Hits

## + 0.0078 * Walks

## - 0.0566 * Years

## + 0 * CAtBat

## + 0.0004 * CHits

## - 0.0001 * CHmRun

## + 0.0001 * CRBI

## - 0.0002 * CWalks

## + 0 * PutOuts

## - 0.0001 * Assists

## + 5.9318

##

## LM num: 6

## Salary =

## -0.0003 * AtBat

## + 0.0014 * Hits

## + 0.0036 * Walks

## - 0.0242 * Years

## + 0 * CAtBat

## + 0 * CHits

## - 0.0005 * CHmRun

## + 0.0007 * CRBI

## - 0.0001 * CWalks
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## + 0 * PutOuts

## - 0.0007 * Assists

## + 6.1865

##

## LM num: 7

## Salary =

## -0.0003 * AtBat

## + 0.0035 * Hits

## - 0.0061 * HmRun

## + 0.0057 * Walks

## - 0.0638 * Years

## + 0.0001 * CAtBat

## + 0 * CHits

## + 0.0014 * CHmRun

## + 0.0003 * CRBI

## - 0.0001 * CWalks

## + 0 * PutOuts

## - 0.0001 * Assists

## + 6.1356

##

## Number of Rules : 7

plot(hit_m5)

CAtBat

1

≤ 1452 > 1452

CHits

2

≤ 182 > 182

RBI

3

≤ 21 > 21

LM 1
(12/79.24%)

4
LM 2

(44/18.261%)

5

AtBat

6

≤ 465> 465

LM 3
(33/25.466%)

7
LM 4

(14/18.802%)

8

Hits

9

≤ 117 > 117

LM 5
(70/50.132%)

10

CRBI

11

≤ 273> 273

LM 6
(20/48.255%)

12
LM 7

(70/38.212%)

13

hit_m5rules <- M5Rules(Salary ~ ., data = Hitters,

control = Weka_control(M=10))

hit_m5rules

## M5 pruned model rules

## (using smoothed linear models) :

## Number of Rules : 8

##

## Rule: 1

## IF

## CAtBat > 1452

## Hits <= 117.5

## THEN

##

## Salary =

## -0.0003 * AtBat

## + 0.0014 * Hits

## + 0.0078 * Walks

## - 0.0566 * Years

## + 0 * CAtBat
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## + 0.0004 * CHits

## - 0.0001 * CHmRun

## + 0.0001 * CRBI

## - 0.0002 * CWalks

## + 0 * PutOuts

## - 0.0001 * Assists

## + 5.9318 [70/50.132%]

##

## Rule: 2

## IF

## CRuns > 213.5

## CRBI > 273

## THEN

##

## Salary =

## -0.0006 * AtBat

## + 0.0046 * Hits

## - 0.005 * HmRun

## - 0.0009 * RBI

## + 0.0049 * Walks

## - 0.0549 * Years

## + 0.0001 * CAtBat

## - 0.0002 * CHits

## + 0.0014 * CHmRun

## + 0.0003 * CRuns

## + 0.0004 * CRBI

## - 0.0002 * CWalks

## + 0.0001 * PutOuts

## + 6.1099 [70/34.674%]

##

## Rule: 3

## IF

## CAtBat <= 842.5

## AtBat > 206.5

## THEN

##

## Salary =

## -0.0006 * AtBat

## + 0.0101 * Years

## - 0.0003 * CAtBat

## + 0.0088 * CRuns

## + 0.0008 * CRBI

## + 0.0014 * CWalks

## + 0.0002 * PutOuts
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## + 0.0035 * Errors

## + 4.3354 [51/25.436%]

##

## Rule: 4

## IF

## CAtBat > 1283.5

## THEN

##

## Salary =

## -0.0005 * AtBat

## + 0.0023 * RBI

## + 0.0015 * CRuns

## + 5.7599 [32/71.137%]

##

## Rule: 5

## IF

## CRuns > 61.5

## AtBat <= 406

## HmRun <= 8.5

## THEN

##

## Salary =

## -0.0006 * AtBat

## + 0.0033 * HmRun

## + 0.0004 * CAtBat

## + 5.1954 [15/33.291%]

##

## Rule: 6

## IF

## AtBat <= 406

## HmRun <= 7.5

## THEN

##

## Salary =

## -0.006 * AtBat

## + 0.0389 * HmRun

## + 5.9503 [10/34.556%]

##

## Rule: 7

## IF

## AtBat > 406

## THEN

##

## Salary =
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## -0.0008 * AtBat

## + 5.6685 [9/40.874%]

##

## Rule: 8

##

## Salary =

## + 5.7277 [6/100%]
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