
Support Vector Machine
Arnab Maity

NCSU Statistics ~ 5240 SAS Hall ~ amaity[at]ncsu.edu

Contents

Introduction 2

Maximal margin classifier 2

Support vector classifiers 4

More than two classes 9

Support vector machines 11

SVMs and the Curse of Dimensionality 15

SVM as penalized method and Support Vector Regression 16

ST 563 support vector machine 2

Introduction

The support vector machine (SVM) is a family of classification rules
that contain both parametric (e.g., linear) and nonparametric (e.g.,
kernel based) methods. It is often considered as one of the ready-to-
use classifiers. It can be viewed as a generalization of linear decision
boundaries for classification. In particular, SVM produces nonlin-
ear boundaries by constructing a linear boundary in a large, trans-
formed version of the feature space. We will mainly discuss three
approaches: maximal margin classifier, the support vector classifier,
and the support vector machine.1 1 People often loosely refer to these

methods collectively as support vector
machines.

Maximal margin classifier

−0.6 −0.4 −0.2 0.0 0.2

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

X1

X
2

Figure 1: Simulated two class data
with support vectors and separating
hyperplane (line) highlighted.

We know that linear discriminant analysis and logistic regression
both estimate linear decision boundaries (using different approaches)
in classification problems. The separating hyperplane classifiers
construct linear decision boundaries that explicitly try to separate the
data into different classes as well as possible. They provide the basis
for support vector classifiers.

Let us take a look at the following artificially generated dataset.
The dataset contains two predictors, X1 and X2, and observations
come from two classes (blue circles and orange triangles); see Figure
1. The two classes are well separated, and a straight line can be used
for classification. This situation is called linearly separable. Formally, in
a linearly separable case, there exists β0, β1, β2 such that the line

β0 + X1β1 + X2β2 = 0

perfectly separate the two classes. If we code the response as Y = −1
and Y = 1 for the two classes, respectively, then for a data point with
predictor values (Xi1, Xi2), we have the relation

Yi = −1 if β0 + Xi1β1 + Xi2β2 < 0; Yi = +1 otherwise.

In other words,

Yi = sign(β0 + Xi1β1 + Xi2β2).

In general, with p predictors, Xi1, . . . , Xip, we will use a linear com-
bination of the form β0 + Xi1β1 + . . . + Xipβp. This is called a hyper-
plane, and thus the name separating hyperplane. One crucial property
of a separating hyperplane is that,

Yi(β0 + Xi1β1 + . . . + Xipβp) > 0, i = 1, . . . , n.

When such a separating hyperplane exists, we can construct a nat-
ural classifier: for a new observation x = (x1, . . . , xp), the predicted

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 support vector machine 3

class is
Ŷ = sign(β0 + x1β1 + . . . + xpβp).

In other words, a test observation is assigned a class depending on
which side of the hyperplane it is located.

One possible was to find such a separating hyperplane is to mini-
mize the distance of misclassified points to the decision boundary. If
a response Yi = 1 is misclassified, then β0 + Xi1β1 + . . . + Xipβp < 0,
and the opposite for a misclassified response with Yi = −1. Also note
that the magnitude of β0 + Xi1β1 + . . . + Xipβp tells us how far the
observation (Xi1, . . . , Xip) is located from the boundary. Thus we can
minimize

− ∑
i∈M

Yi(β0 + Xi1β1 + . . . + Xipβp)

with respect to β0, . . . , βp, whereM indexes the set of misclassified
points. It can be shown that the quantity above is nonnegative and
proportional to the distance of the misclassified points to the decision
boundary defined by β0 + X1β1 + . . . + Xpβp = 0.

−0.6 −0.4 −0.2 0.0 0.2

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

X1

X
2

Figure 2: Examples of multiple separat-
ing hyperplanes for the same data.

However, when the problem is linearly separable, there are in-
finitely many such separating hyperplanes, see Figure 2. In this
perfectly separable case, given any separating hyperplane, we can
define the margin as the minimal distance from the observations to
the hyperplane.2 The optimal classification rule is the line that maxi-

2 Formally, for a given separating
hyperplane, define Mi = distance
between the hyperplane and i-th
training point. The margin is defined
as M = min(M1, . . . , Mn). The optimal
classification rule (maximal separating
hyperplane) maximizes the margin.

mizes the margin around the separating line. Such a classifier is called
the maximal margin classifier. Formally, we consider the optimization
problem:

max M subject to

{
Yi(β0 + Xi1β1 + . . . + Xipβp) ≥ M, i = 1, . . . , n,

β2
1 + . . . + β2

p = 1,

with respect to β0, . . . , βp. The two conditions ensure that, when M >

0, each observation will remain on the correct side of the boundary
and is at least distance M from the boundary. We seek the largest
such M and associated parameters.

It can be shown that the optimization problem above is equivalent
to the following optimization problem:

min (β2
1 + . . .+ β2

p) subject to Yi(β0 +Xi1β1 + . . .+Xipβp) ≥ 1, i = 1, . . . , n,

with respect to β0, . . . , βp. To understand the geometry behind the
optimization problem above, we note that for perfectly separable
data, Yi(β0 + Xi1β1 + . . . + Xipβip) > 0 for each i. The constraint
Yi(β0 + Xi1β1 + . . . + Xipβp) ≥ 1 implies β0 + Xi1β1 + . . . + Xipβp ≥ 1
if Yi = 1, and that β0 + Xi1β1 + . . . + Xipβp ≤ −1 if Yi = −1. Thus
the constraints above define an empty slab or margin around the
linear decision boundary of thickness 1/(β2

1 + . . . + β2
p)

1/2. Hence

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 support vector machine 4

we choose β0, β1, . . . , βp to maximize its thickness, or equivalently
minimize (β2

1 + . . . + β2
p). The boundaries of this empty slab/margin

are determined by the points that exactly satisfies the condition

β0 + X1β1 + . . . + Xpβp = ±1.

Once we obtain the estimators β̂0, β̂1, . . . , β̂p, the optimal separat-
ing hyperplane is f̂ (x) = β̂0 + x1 β̂1 + . . . + xp β̂p. Thus our classifica-
tion rule is as follows: for a new observation x = (x1, . . . , xp),

Ŷ = sign{ f̂ (x)}.

X1

X
2

−0.6 −0.4 −0.2 0.0 0.2

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Figure 3: Simulated two class data
with support vectors and separating
hyperplane (line) highlighted.

In Figure 3, the optimal separating line is shown as the solid red
line, the closest points to the line are circled, and the separation be-
tween the classes is shown using the dashed black lines. Essentially,
the separating line corresponding to the maximal margin classifier
represents the middle line of the widest space that we can fit between
the two classes. Although none of the training observations fall in the
margin (by construction), this will not necessarily be the case for test
observations. The intuition is that a large margin on the training data
will lead to good separation on the test data.

Notice that there are a few points (circled) that are closest, and
equidistant, to the red separating line. These three points lie along
the dashed lines indicating the width of the margin, that is, these
points satisfy the condition

Yi(β0 + Xi1β1 + . . . + Xipβp) = 1,

exactly. These points are called the support vectors for this problem. It
can be shown that only the support vectors are enough to define the opti-
mal classification rule fully. If we move the support vectors, the optimal
separating line also changes. A movement to any of the other obser-
vations would not affect the separating hyperplane, provided that
the observation’s movement does not cause it to cross the boundary
set by the margin. This property of the maximal margin classifier is
important in development of support vector classifier and support
vector machine.

X1

X
2

−0.6 −0.4 −0.2 0.0 0.2

0.
4

0.
6

0.
8

1.
0

Figure 4: Simulated two-class data
with separating hyperplane (line)
highlighted for the non-separable case.

Support vector classifiers

When the two classes are not linearly separable (e.g., Figure 4), we
will not be able to find a line that entirely separates the groups, that
is, the maximal margin classifier can not be computed. Thus, the
two classes cannot be classified exactly. We can, however, generalize
the ideas to develop a classification rule that almost separates the
classes. To do so, we allow a few points to fall on the wrong side

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 support vector machine 5

of the margin or separating hyperplane. Such a classifier is called a
support vector classifier or a soft-margin classifier.3 3 The term “soft margin” is coined

because the margin can be violated by
some of the training observations.

Even if the classification problem is completely separable, we still
may consider such soft margin classifier for robustness. A separating
hyperplane based classifier will perfectly classify all of the training
data (training error = 0), which can lead to sensitivity to individual
observations. An example is shown in Figure 5. The addition of a
single observation in the right-hand panel of Figure Figure 5 leads
to a dramatic change in the maximal margin hyperplane. Thus we
might want to consider a classifier based on a hyperplane that does
not perfectly separate the two classes, in the interest of greater ro-
bustness to individual observations, and better classification of most
of the training observations – it could be worthwhile to misclassify a
few training observations in order to do a better job in classifying the
remaining observations.

−1 0 1 2 3

−
1

0
1

2
3

−1 0 1 2 3

−
1

0
1

2
3

X1X1

X
2

X
2

Figure 5: Two classes of observations
are shown in blue and in purple, along
with the maximal margin hyperplane
(left panel). An additional blue ob-
servation has been added, leading to
a dramatic shift in the maximal mar-
gin hyperplane shown as a solid line
(right panel). The dashed line indicates
the maximal margin hyperplane that
was obtained in the absence of this
additional point.

In support vector classifier, each data point i is given a slack vari-
able ei that allow individual data points to be on the wrong side of
the margin or the separating hyperplane. The slack variables ei quan-
tifies where the i-th observation is located relative to the hyperplane
and the margin:

• If ei = 0 then the i-th data point is on the correct side of the mar-
gin;

• If ei > 0 then the i-th observation is on the wrong side of the
margin (the data point has violated the margin),

• If ei > 1 then it is on the wrong side of the hyperplane.

−0.6 −0.4 −0.2 0.0 0.2

0.
4

0.
6

0.
8

1.
0

x1

x2

Figure 6: Simulated two-class data
with support vectors and separating
hyperplane (line) highlighted for the
non-separable case.

The support vector classifiers then attempt to maximize the margin
such that ∑i ei ≤ L, for a pre-specified constant L.4 Formally, we

4 The constant L controls the number
and severity of the violations to the
margin and to the hyperplane that can
be tolerated by the classifier.

solve the optimization problem:

max M

with respect to β0, . . . , βp and e1, . . . , en, subject to the constraints

Yi(β0 + Xi1β1 + . . . + Xipβp) ≥ M(1− ei), i = 1, . . . , n,

β2
1 + . . . + β2

p = 1,

ei ≥ 0, e1 + . . . + en ≤ L,

where L is a nonnegative tuning parameter.
Conceptually, the value ei in the constraint Yi(β0 + Xi1β1 + . . . +

Xipβp) ≥ M(1− ei) is the proportional amount by which the quantity
f (Xi) = β0 + Xi1β1 + . . . + Xipβp is on the wrong side of its margin.
Hence by bounding the sum e1 + . . . + en, we bound the total propor-
tional amount by which f (Xi) fall on the wrong side of their margin.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 support vector machine 6

Misclassifications occur when ei > 1, so bounding e1 + . . . + en at a
value L bounds the total number of training misclassifications at L.
Specifying L = 0 gives us the maximal margin classifier, if it exists. In
contrast, as L increases we become more tolerant of violations to the
margin, and so the margin will widen. In practice, we need to choose
L via cross-validation.

As before, we can write an equivalent optimization problem:

min (β2
1 + . . . + β2

p)

subject to the constraints

Yi(β0 + Xi1β1 + . . . + Xipβp) ≥ 1− ei, i = 1, . . . , n,

ei ≥ 0, e1 + . . . + en ≤ L.

This is the usual way the support vector classifier is defined for the
nonseparable case.

Once we obtain the estimators β̂0, β̂1, . . . , β̂p, the estimated hyper-
plane is f̂ (x) = β̂0 + x1 β̂1 + . . . + xp β̂p, and our classification rule is
as follows: for a new observation x = (x1, . . . , xp),

Ŷ = sign{ f̂ (x)}.

The classification boundary, and the two margins are

f̂ (x) = 0, and f̂ (x) = ±1,

respectively.
As with the maximal margin classifier, the classifier is affected only by

the observations that lie on the margin or violates the margin. Data points
that lies strictly on the correct side of the margin does not affect
the support vector classifier at all. In this case, data points that fall
directly on the margin, or on the wrong side of the margin for their
class, are known as support vectors. The circled points in Figure 4 are
the support vectors for the the classifier shown using the red line.5 5 Since support vector classifier is based

only on a small subset of the training
set – the support vectors – it is quite
robust to the behavior of data points
that are far away from the hyperplane.

Let us now revisit the wines data. We can use the svm() func-
tion in the e1071 library to implement support vector classifier6. We

6 There are many other functions such
as ksvm in the kernlab library that
perform SVMs.

will only use two classes to begin with (1 and 2) and two covariate,
Alcohol and Proline, so that we can plot the results. Support vector
classifiers however can be implemented for much larger number of
predictors.7 While it is technically not needed, we often standardive 7 The argument type = “C-classification”

specifies that we want to perform the
support vector classification.

the predictors beforehand – svm() does standardization by default.
We perform standardization manually so that we can compare the
coefficients of the resulting hyperplane.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 support vector machine 7

Read wine data

wines <- read.table("data/Wines.txt", header = TRUE)

Two class (1 and 2) data

wine_twoclass <- wines[wines$Class < 3,]

wine_twoclass$Class <- as.factor(wine_twoclass$Class)

Standardize the predictors (excluding Class)

wine_twoclass[,-1] <- scale(wine_twoclass[,-1],

center = TRUE, scale = TRUE)

SVC with linear boundary

sv.wine <- svm(Class ~ Proline + Alcohol,

data = wine_twoclass,

type = "C-classification",

kernel = "linear",

cost = 1)

sv.wine

##

Call:

svm(formula = Class ~ Proline + Alcohol, data = wine_twoclass, type = "C-classification",

kernel = "linear", cost = 1)

##

##

Parameters:

SVM-Type: C-classification

SVM-Kernel: linear

cost: 1

##

Number of Support Vectors: 18

Alcohol

P
ro

lin
e

−2 −1 0 1 2

−
1

0
1

2

Figure 7: Classification of wine data
using support vector classifier.

The argument kernel = "linear" ensures that we are using support
vector classifier. Later, when we learn support vector machine, we will
specify different nonlinear kernels. The parameter cost takes the
role of L, however, the svm() function uses a different mathematical
formulation than what we discuss above. Thus cost is not exactly
same as L. The main concepts, however, remain the same. When the
cost argument is small, then the margins will be wide and many
support vectors will be on the margin or will violate the margin.
When the cost argument is large, then the margins will be narrow
and there will be few support vectors on the margin or violating the
margin. The case cost = ∞ corresponds to the perfectly separable
case.

The coefficients of the separating hyperplane can be extracted
using the coef() function.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 support vector machine 8

beta_hat <- coef(sv.wine)

beta_hat

(Intercept) Proline Alcohol

-0.09306929 1.87645694 1.28020122

Thus, the hyperplane is

−0.093 + 1.876 ∗ Proline + 1.28 ∗Alcohol = 0.

The lines indicating the two margins are

−0.093 + 1.876 ∗ Proline + 1.28 ∗Alcohol = 1,

and
−0.093 + 1.876 ∗ Proline + 1.28 ∗Alcohol = −1,

respectively. The points that are on the margin or violate the margin
are support vectors.

Here, we have used the default value of cost=1. However, it is
very important to choose cost using cross-validation for better opti-
mization. We can use caret to choose cost.

Set up repeated cv option

set.seed(1001)

tr <- trainControl(method = "repeatedcv",

number = 5, repeats = 10)

Tuning grid

tune_grid <- expand.grid(cost = exp(seq(-5,3,len=30)))

Train the model

sv_caret <- train(Class ~ Proline + Alcohol,

data = wine_twoclass,

method = "svmLinear2",

tuneGrid = tune_grid,

trControl = tr)

Cost

A
cc

ur
ac

y
(R

ep
ea

te
d

C
ro

ss
−

V
al

id
at

io
n)

0.950

0.955

0.960

0 5 10 15 20

Figure 8: Results from repeated CV
using support vector classifier on two-
class wines data.

Best C

sv_caret$bestTune

cost

12 0.1400834

Final fit

wine_sv_final <- svm(Class ~ Proline + Alcohol,

data = wine_twoclass,

type = "C-classification",

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 support vector machine 9

kernel = "linear",

cost = sv_caret$bestTune$cost)

wine_sv_final

##

Call:

svm(formula = Class ~ Proline + Alcohol, data = wine_twoclass, type = "C-classification",

kernel = "linear", cost = sv_caret$bestTune$cost)

##

##

Parameters:

SVM-Type: C-classification

SVM-Kernel: linear

cost: 0.1400834

##

Number of Support Vectors: 30

To obtain the predicted classes, we can use the predict() func-
tion.8 8 See documentation of predict.svm().

pred.class <- predict(object = wine_sv_final,

newdata = wine_twoclass,

type = "response")

err <- klaR::errormatrix(true = wine_twoclass$Class,

predicted = pred.class,

relative = TRUE)

round(err, 3)

predicted

true 1 2 -SUM-

1 0.966 0.034 0.034

2 0.042 0.958 0.042

-SUM- 0.600 0.400 0.038

More than two classes

Suppose that we have K > 2 classes. One simple way to extend
SVM to this situation is to compute all pair-wise classifiers, that is,
compute all CK

2 = K(K − 1)/2 classification rules. This is often
called one-versus-one approach. Given a test observation, we classify
it using each of the CK

2 classifiers, and record the number of times
that the test observation is assigned to each of the K classes. The final
classification is performed taking a majority vote.

Another approach is to compare class k with the remaining classes
together, i.e., class k vs. not class k. This is called the one-versus-all ap-
proach. Let β̂0k, . . . , β̂pk denote the parameters that result from fitting

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 support vector machine 10

an SVM comparing the k-th class (coded as +1) to the others (coded
as −1). Given a test observation, x, we assign the observation to the
class for which β̂0k + x1 β̂1k + . . . + xp β̂pk is largest, as this amounts to
a high level of confidence that the test observation belongs to the kth
class rather than to any of the other classes.

The svm() function uses one-versus-one approach. Let us use the
full wines data with three classes, but with two predictors Alcohol

and Proline. We show support vector classifier with cost chosen by
cross-validation for demonstration.

Pre-process wines data

wines$Class <- as.factor(wines$Class)

wines[, -1] <- scale(wines[,-1],

center = TRUE, scale = TRUE)

Train the model

set.seed(1001)

tr <- trainControl(method = "repeatedcv",

number = 5, repeats = 10)

tune_grid <- expand.grid(cost = exp(seq(-5,3,len=30)))

sv_caret <- train(as.factor(Class) ~ Proline + Alcohol,

data = wines,

method = "svmLinear2",

tuneGrid = tune_grid,

trControl = tr)

Cost

A
cc

ur
ac

y
(R

ep
ea

te
d

C
ro

ss
−

V
al

id
at

io
n)

0.70

0.75

0.80

0 5 10 15 20

Figure 9: CV results for three class
wines data.

SVC with optimal cost

sv.wine <- svm(Class ~ Proline + Alcohol,

data = wines,

type = "C-classification",

kernel = "linear",

cost = sv_caret$bestTune$cost)

Alcohol

P
ro

lin
e

−2 −1 0 1 2

−
1

0
1

2
3

Figure 10: Classification of wine data
using support vector classifier with all
three classes.

sv.wine

##

Call:

svm(formula = Class ~ Proline + Alcohol, data = wines, type = "C-classification",

kernel = "linear", cost = sv_caret$bestTune$cost)

##

##

Parameters:

SVM-Type: C-classification

SVM-Kernel: linear

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 support vector machine 11

cost: 0.243219

##

Number of Support Vectors: 90

Support vector machines

The support vector classifier described so far finds linear bound-
aries in the input feature space. Often linear effects of the covariates
X is not enough for a classification problem. Thus we might want
to incorporate nonlinear terms (e.g., square or cubic terms). For ex-
ample, if we have two covariates X1 and X2. So we might include
X1, X2, X2

1 , X2
2 and X1X2 in our classifier. If we run the support vec-

tor classifier, the decision boundary would be a quadratic polyno-
mial. In general, we can incorporate other nonlinear transforma-
tions h1(X), . . . , hM(X) as features. We can make the procedure more
flexible by enlarging the feature space using basis expansions such
as polynomials or splines. Generally linear boundaries in the en-
larged space achieve better training-class separation, and translate
to nonlinear boundaries in the original space. Once the basis func-
tions hm(x), m = 1, . . . , , M are selected, the procedure is the same
as before. We fit the support vector classifier using input features
h1(Xi), h2(Xi), . . . , hM(Xi), i = 1, . . . , N, and produce the (nonlinear)
function

f̂ (x) = β̂0 + h1(x)β̂1 + . . . + hM(x)β̂M.

The classifier is Ŷ = sign(f̂ (x)) as before.
As an example, the following code includes natural cubic spline

terms with four degrees of freedom of Alcohol and Proline with
cost = 0.2. The decision boundaries are quadratic, as shown in
Figure 11.

library(splines)

sv.wine <- svm(Class ~ ns(Proline, df=4) + ns(Alcohol, df=4),

data = wines,

type = "C-classification",

kernel = "linear",

cost = 0.2)

Alcohol

P
ro

lin
e

−2 −1 0 1 2

−
1

0
1

2
3

Figure 11: Classification of wine data
using support vector classifier with
natural cubic splines.

The core idea is that even though the two classes are not separable
in the original feature space, they may be separable in transformed,
and/or expanded feature space. For example, consider a simulated
data in Figure 12, panels (a) and (b). The dataset has two classes and
two predictors, X1 and X2. Panel (a) shows the original data. Even
though we see the separation between two classes visually, fitting a
linear support vector classifier is not ideal here. Panel (b) plots the

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 support vector machine 12

transformed predictors X2
1 and X2

2 . In the transformed feature space,
the two classes are linearly separable. Specifically, we see that there is
a linear combination of the form aX2

1 + bX2
2 + c = 0 that separates the

two classes.
Panels (c) – (e) in Figure 12, show another example. Panel (c)

shows the two original features. Panel (d) shows transformed pre-
dictors X2

1 and X2
2 , but they do not linearly separate the classes. It

turns out we need a third predictor X1X2 to linearly separate the
classes, see Panel (e). Thus we see that there is a linear combina-
tion of the form aX2

1 + bX2
2 + cX1X2 + d = 0 that separates the two

classes. In general, as we mention above, we can include other non-
linear transformations h1(X), . . . , hM(X) as features in support vector
classifiers.

−2 −1 0 1 2

−
2

−
1

0
1

2

(a)

X1

X
2

0 1 2 3 4

0
1

2
3

4

(b)

X1^2

X
2^

2

−2 −1 0 1 2

−
2

−
1

0
1

2
(c)

X1

X
2

0 1 2 3 4

0
1

2
3

4

(d)

X1^2

X
2^

2

(e)

0 1 2 3 4−
3

−
2

−
1

 0
 1

 2
 3

 4

0
1

2
3

4

X1^2

X
2^

2X
1*

X
2

Figure 12: Simulated example of trans-
formed and enlarged feature space.

Support vector machines (SVM) generalize support vector classifiers
by including nonlinear features in a specific way that allows us to
add many such features as well as a high number of variables. The
dimension of the enlarged space is allowed to get very large, infi-
nite in some cases. Without going into mathematics, SVM does so
using the so called kernel trick, that is, by specifying a kernel function
that controls which nonlinear features to include in the classifier. To
see this, let us briefly look into how support vector classifier com-
putes the classifier, that is, how the optimization is done. Define
β = (β1, . . . , βp)T . It turns out that

β̂ =
n

∑
i=1

α̂iYiXi,

for some weights α̂i. Thus the solution to the support vector classifier
problem can be represented as

f̂ (x) = β̂0 + xT β = β̂0 +
n

∑
i=1

α̂ixTXi Yi = β̂0 +
n

∑
i=1

α̂i〈x, Xi〉Yi.

To estimate β̂0 and α̂1, . . . , α̂n, it can be shown that we only need the
all pair-wise inner products of the training data 〈Xi, Xi′〉. Many of

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 support vector machine 13

the resulting solutions α̂i are zero. The observations for which α̂i are
nonzero are called the support vectors.

To summarize, in representing the linear classifier f (x), and in com-
puting its coefficients, all we need are inner products: 〈Xi, Xi′ 〉, i, i′ =
1, . . . , n, and 〈x, Xi〉.

Therefore, for general nonlinear features

h(Xi) = [h1(Xi), h2(Xi), . . . , hM(Xi)]
T ,

the classifier f̂ (x) can be computed using the inner products: 〈h(Xi), h(Xi′)〉
and 〈h(x), h(Xi)〉. In fact, we need not specify the transformation
h(x) at all, but require only knowledge of the kernel function

K(x, x′) = 〈h(x), h(x′)〉,

that computes inner products in the transformed space.

X1

X
2

−0.6 −0.4 −0.2 0.0 0.2

0.
4

0.
6

0.
8

1.
0

Figure 13: Simulated two-class data
with linear (blue dashed), quadratic
(black dash-dotted) and radial-basis
based (red solid) classification rules.

In general, the kernel function K(·, ·) should be a symmetric posi-
tive (semi-) definite function. Some popular choices for K(·, ·) in the
SVM are

Linear : K(x, x′) = 〈x, x′〉,

d-th degree polynomial : K(x, x′) = (1 + 〈x, x′〉)d,

Radial basis : K(x, x′) = exp(−γ||x− x′||2),

Neural network : K(x, x′) = tanh(κ1〈x, x′〉+ κ2).

For example, using the “linear” or “quadratic” (d = 2 degree polyno-
mial) kernel will result in a linear or quadratic classification bound-
aries, respectively. On the other hand, using a “radial basis kernel”
captures other nonlinear features. As an example, Figure 13 shows
three classification rules corresponding to linear, quadratic and radial
kernels based on a simulated data set.

To see the correspondence between kernels and original features,
consider for example a feature space with two inputs X1 and X2, and
a polynomial kernel of degree 2. Then

K(X, X′) = (1+ 〈X, X′〉)2 = 1+ 2X1X′1 + 2X2X′2 +(X1X′1)
2 +(X2X′2)

2 + 2X1X′1X2X′2.

Therefore, M = 6, and with the choice h1(X) = 1, h2(X) =
√

2X1, h3(X) =√
2X2, h4(X) = X2

1 , h5(X) = X2
2 , h6(X) =

√
2X1X2, we have

K(X, X′) = 〈h(X), h(X′)〉.
Let us now revisit the wines data. Figure 14 shows the decision

boundaries using the radial basis kernel SVM. Here we set γ = 1.
In practice, we need to explore a few values of γ to select an optimal
value based on test performance.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 support vector machine 14

sv.wine <- svm(Class ~ Proline + Alcohol,

data = wines,

type = "C-classification",

kernel = "radial",

gamma = 1,

cost = 0.2)

Alcohol

P
ro

lin
e

−2 −1 0 1 2

−
1

0
1

2
3

Figure 14: Classification of wine data
using radial kernel SVM.

sv.wine

##

Call:

svm(formula = Class ~ Proline + Alcohol, data = wines, type = "C-classification",

kernel = "radial", gamma = 1, cost = 0.2)

##

##

Parameters:

SVM-Type: C-classification

SVM-Kernel: radial

cost: 0.2

##

Number of Support Vectors: 114

In general, non-linear kernels are better in capturing nonlinear
boundaries compared to linear methods like LDA, Logistic regression
etc. Figure 15 shows two examples, the left panel uses a polynomial
kernel of degree 3, and right panel uses a radial basis kernel. In both
these cases, linear support vector classifiers would not work well.

−4 −2 0 2 4

−
4

−
2

0
2

4

−4 −2 0 2 4

−
4

−
2

0
2

4

X1X1

X
2

X
2

Figure 15: Left: An SVM with a poly-
nomial kernel of degree 3 is applied
to the non-linear data from Figure 9.8,
resulting in a far more appropriate
decision rule. Right: An SVM with a ra-
dial kernel is applied. In this example,
either kernel is capable of capturing the
decision boundary. Figure and caption
taken from the textbook.

One advantage of using a kernel rather than simply enlarging the
feature space using transformation of the original features is ease of
computation. Using kernels, we only need to compute inner products

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 support vector machine 15

distinct pairs of observations 〈Xi, Xi′〉. This can be done without
explicitly working in the enlarged feature space. This is important
because in many applications of SVMs, the enlarged feature space
is so large that computations are intractable. For some kernels, e.g.,
radial kernel, the feature space is implicit and infinite-dimensional,
so it is not feasible to specify the entire feature space using explicit
basis functions.

SVMs and the Curse of Dimensionality

Even though some publications claim that SVMs have some edge on
the curse of dimensionality over other methods, such claims may not
be true.

In the early literature on support vectors, there were claims that the
kernel property of the support vector machine is unique to it and
allows one to finesse the curse of dimensionality. Neither of these
claims is true. – Elements of Statistical Learning by Hastie et al.

Consider the example a feature space with two inputs X1 and X2,
and a polynomial kernel of degree 2. Then

K(X, X′) = (1+ 〈X, X′〉)2 = 1+ 2X1X′1 + 2X2X′2 +(X1X′1)
2 +(X2X′2)

2 + 2X1X′1X2X′2.

Therefore, M = 6, and with the choice h1(X) = 1, h2(X) =
√

2X1, h3(X) =√
2X2, h4(X) = X2

1 , h5(X) = X2
2 , h6(X) =

√
2X1X2, we have

K(X, X′) = 〈h(X), h(X′)〉. This kernel is not incorporating a fully
general inner product in the space of powers and products. For ex-
ample, all terms of the form 2XjX′j are given equal weight, and the
kernel cannot adapt itself to concentrate on subspaces. If the num-
ber of features p were large, but the class separation occurred only
in linear effects of X1 and X2, this kernel would not easily find the
structure. Thus it would suffer from having many dimensions to
search over. Thus to get a better performing kernel, we need prior
knowledge about the proper subspace in which the classes are sepa-
rated, and build a kernel based on that. However, such knowledge is
unlikely to be readily available – a major goal of adaptive methods is
to discover such structure.

Chapter 12.3.4 of Elements of Statistical Learning by Hastie, Tibshi-
rani and Friedman, presents a simulation study with two classes,
where a hyperplane cannot separate the classes in the original fea-
ture space, and consequently the support vector classifier performs
poorly. The polynomial support vector machine makes a substantial
improvement in test error rate, but is found to be adversely affected
by noise features. Higher degree polynomial kernels performed

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 support vector machine 16

much worse compared to 2nd degree polynomial kernel in this set-
ting, indicating that SVM can be very sensitive to the choice of kernel
function.

SVM as penalized method and Support Vector Regression

Suppose we define f (x) = β0 + h1(x)β1 + . . . + hM(x)βM, where
hm(x) are transformations of the original functions. Then it can be
shown that the support vector classifier problem with h1(x), . . . , hM(x)
as predictors is equivalent to solving the following penalized prob-
lem:

min
n

∑
i=1

[1−Yi f (Xi)]+ +
λ

2

M

∑
m=1

β2
m,

where t+ denotes the positive part, that is,t+ = tI(t > 0), and λ

is a penalty parameter. The loss function above is also called the
hinge loss. The optimization problem has the typical form of loss +
penalty that we have encountered in our discussion of regularized
regression.

The penalty above is the ridge penalty. Some recent works9 re- 9 Yi, C. and Huang, J. (2017) Semis-
mooth Newton Coordinate Descent
Algorithm for Elastic-Net Penalized
Huber Loss Regression and Quantile
Regression, Journal of Computational
and Graphical Statistics, 547-557.

places the ridge penalty with the lasso and elastic net penalty to
obtain sparse solution of the coefficients. The sparseSVM library per-
forms such a procedure in R. For the two-class wines data, let us run
the support vector classifier based on all 13 predictors.

Set up repeated cv option

set.seed(1001)

tr <- trainControl(method = "repeatedcv",

number = 5, repeats = 10)

Tuning grid

tune_grid <- expand.grid(cost = exp(seq(-5,3,len=30)))

Train the model

sv_caret <- train(Class ~ .,

data = wine_twoclass,

method = "svmLinear2",

tuneGrid = tune_grid,

trControl = tr)

Final model

wine_sv_final <- svm(Class ~ .,

data = wine_twoclass,

type = "C-classification",

kernel = "linear",

cost = sv_caret$bestTune$cost)

sv_caret$bestTune

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 support vector machine 17

cost

11 0.1063118

beta_hat <- coef(wine_sv_final)

beta_hat

(Intercept) Alcohol Malic Ash Alcal Mg

-0.12034879 0.56737384 0.19086682 0.42391421 -0.49320791 0.03062720

Phenol Flav Nonf Proan Color Hue

-0.05963129 0.04504281 -0.09314091 -0.06333361 0.21875381 -0.11699293

Abs Proline

0.30659144 0.72825654

Notice that the standard support vector classifier does not set any
of the small coefficients to exactly zero. Recall that we have already
standardized the two-class wines data. So we suspect predictors
with smaller values of coefficients (e.g., Mg, Phenol, Flav etc) may not
contribute to the classification rule as much as other variables like
Alcohol, Proline, Ash, Alcal, which have relatively large coefficients.

Now let us run the same classifier with lasso penalty. We will use
CV to choose λ. By default, the R function uses 10-fold CV.

library(sparseSVM)

set.seed(1001)

X <- as.matrix(wine_twoclass[,-1])

y <- wine_twoclass$Class

Cross validation to choose lambda

spr.cv <- cv.sparseSVM(X = X, y = y, alpha = 1)

spr.cv$lambda.min

[1] 0.08655872

plot(spr.cv)

abline(v = log(spr.cv$lambda.min))

−1 −2 −3 −4 −5

0.0

0.1

0.2

0.3

0.4

0.5

log(λ)

C
ro

ss
−

va
lid

at
io

n
P

re
di

ct
io

n
E

rr
or

0 2 3 3 4 4 6 6 7 7 8 9 8 9 10 11
Variables selected

Figure 16: 10-fold CV results for sparse
support vector classifier.

Final fit

beta_sparse <- coef(spr.cv,

lambda = spr.cv$lambda.min)

cbind(beta_sparse, beta_hat)

beta_sparse beta_hat

(Intercept) -0.04816313 -0.12034879

Alcohol 0.59791703 0.56737384

Malic 0.00210073 0.19086682

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 support vector machine 18

Ash 0.07456517 0.42391421

Alcal -0.02877570 -0.49320791

Mg 0.00000000 0.03062720

Phenol 0.00000000 -0.05963129

Flav 0.07439179 0.04504281

Nonf 0.00000000 -0.09314091

Proan 0.00000000 -0.06333361

Color 0.00000000 0.21875381

Hue 0.00000000 -0.11699293

Abs 0.16252337 0.30659144

Proline 0.88202057 0.72825654

Note that quite a few variables have exactly zero coefficients in the
final fit.

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

r

V
e(

r,
e)

Figure 17: The loss function for support
vector regression for epsilon value
1. The blue dashed line is the usual
squared error loss.

SVM can be applied to regression problems with quantitative
response as well. Let us start with a linear regression problem

E(Yi|Xi) = f (Xi),

where
f (Xi) = β0 + Xi1β1 + . . . + Xipβp = β0 + XT

i β.

Support vector regression solves the following problem:

min
n

∑
i=1

Vε(Yi − f (Xi)) +
λ

2

p

∑
j=1

β2
j ,

where the loss function Vε(·) has the form

Vε(r) =

{
0 if |r| < ε,

|r| − ε otherwise.

Thus this loss function ignores errors of size less than ε, see Figure
17. It can be shown that the solution function has the form

f̂ (x) =
n

∑
i=1

(α̂∗i − α̂i)〈x, Xi〉+ β̂0,

where α̂∗i and α̂i are constants. Typically only a subset of the values
(α̂∗i − α̂i) are nonzero, and the associated data values are called the
support vectors. As was the case in the support vector classification,
the solution depends on the input values only through the inner
products 〈Xi, Xi′〉. Thus we can generalize the methods to richer
spaces by defining an appropriate inner product, and specifying the
corresponding kernel function.

In R, the svm() functions can perform regression as well. Here we
have two parameters to tune: ε and cost. This can be done using
usual methods such as CV. Here we demonstrate support vector

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 support vector machine 19

regression for a specific value of ε = 0.1 and cost = 1, using Boston

data. We use radial kernel with γ = 1.

library(ISLR2)

svr <- svm(medv ~ lstat, data = Boston,

type = "eps-regression",

kernel = "radial", gamma = 1,

cost = 1, epsilon = 0.1

)

summary(svr)

##

Call:

svm(formula = medv ~ lstat, data = Boston, type = "eps-regression",

kernel = "radial", gamma = 1, cost = 1, epsilon = 0.1)

##

##

Parameters:

SVM-Type: eps-regression

SVM-Kernel: radial

cost: 1

gamma: 1

epsilon: 0.1

##

##

Number of Support Vectors: 406

Prediction

xnew <- data.frame(lstat = seq(2, 37, len=51))

pred <- predict(svr, newdata = xnew)

Plot

plot(medv ~ lstat, data = Boston, pch=19, col = "gray")

lines(xnew$lstat, pred, col = "red", lwd=2)

10 20 30

10
20

30
40

50

lstat

m
ed

v

While the example above involves only one predictor, support vector
regression can accommodate multiple predictors.

Overall, SVMs are quite useful in practice, and extend beyond
what we discussed in this chapter. For example, the penalized loss
function formulation, as described in the classification and regres-
sion context can be used for any convex loss function with any kernel
function. This enables us to use kernel methods in function estima-
tion in linear, generalized linear (e.g., logistic), and other (e.g., least
absolute deviation) regression models.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

	Introduction
	Maximal margin classifier
	Support vector classifiers
	Support vector machines
	SVMs and the Curse of Dimensionality
	SVM as penalized method and Support Vector Regression

