
Introduction to Nonparametric Regression: Basis
Expansions, Regularization, Local regression
Arnab Maity

NCSU Statistics ~ 5240 SAS Hall ~ amaity[at]ncsu.edu

Contents

Introduction 2

Piecewise Polynomials and Splines 4

Natural Cubic Splines 8

Choosing the Number and Locations of the Knots 9

Smoothing Splines 10

Selection of smoothing parameter λ 12

Local Regression 13

Generalized Additive Models 17



ST 563

introduction to nonparametric regression: basis expansions, regularization, local

regression 2

Introduction

So far, many of our regression and classification methods used linear
combinations of the predictors variables. Both linear and logistic
regression models as well as LDA rely on linear model. In general,
the association between Y and X may be nonlinear and non-additive.

There are some straightforward ways to incorporate nonlinearity
in the models. For example, we can include higher order terms such
as X2, X3, X1X2 etc. as predictors, and the resulting regression func-
tions/classification boundaries will be nonlinear in the predictors.
Polynomial regression is one such example where we posit

E(Yi|Xi) = f (X)

for a linear regression model, or

log
[

P(Yi = 1|Xi)

P(Yi = 2|Xi)

]
= f (X)

for a logistic regression model, where

f (X) = β0 + Xiβ1 + . . . + Xd
i βd.

Thus we are assuming that the true function f (X) is a linear combina-
tion of the monomial terms X, . . . , Xd. These terms are examples of
basis functions. In general, given a set of predictors Xi = (Xi1, . . . , Xip),
we may assume that there are there are functions h1(·), . . . , hM(·)
such that the function f (Xi) can be written as or can be approxi-
mated as,

f (Xi) = β0 + h1(Xi)β1 + . . . + hM(Xi)βM,

where β0, . . . , βM are unknown coefficients. The functions h1(·), . . . , hM(·)
are called basis functions. and the representation above is called a lin-
ear basis expansion in X. Once we have specified the basis functions,
we can simply use the linear model approach to fit this model.

0.0

0.4

0.8

1.2

−3 −2 −1 0 1 2 3

x

Figure 1: Examples of a linear (blue),
cubic (red) and piecewise constant
(orange) fit to a simulated data set
with one predictor. The true function is
shown in black.

Some examples of basis representations are shoes below:

• Linear model in each predictors: hm(Xi) = Xim

• Polynomial regressions: hm(X) takes forms such as X2
im or XijXim.

• Nonlinear transformations: hm(X) can take form such as log(Xim)

or
√

Xim.

• Piecewise constant: hm(X) = I(Lm ≤ Xk ≤ Um). By breaking the
range of Xk up into such non-overlapping regions, we can model
f (X) with a piecewise constant function.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu



ST 563

introduction to nonparametric regression: basis expansions, regularization, local

regression 3

Figure 1 shows examples of a linear, polynomial (3rd degree) and
piecewise constant fit to a simulated data set with one predictor.

Depending on the problem at hand, we might use specific basis
functions such as logarithms or power functions. Often we use the
basis to achieve more flexible representations for f (X) – polynomial
regression is an example of this. However, a drawback of polynomial
regression is their global nature, that is, changing the coefficients to
obtain a form in one region of the data might result in wild varia-
tions in the remote/boundary regions. A more useful approach is to
consider families of piecewise-polynomials1 and splines that allow for 1 Piecewise-constants are special case

with degree being set to zero.local polynomial representations.
In each of the approaches above, the number of basis functions

has to be determined by the user. Thus the number of basis functions
can be viewed as a tuning parameter. An alternative approach is to
produce a dictionary consisting of typically a very large number of
basis functions, along with the a method for controlling the complexity
of our model. There are three common approaches:

• Restriction methods, where we decide before-hand to limit the class
of functions. Generalized additive models (GAM) is an example,
where we assume that our model has the form

f (Xi) = β0 + f1(Xi1) + . . . + fp(Xip),

where f1(·), . . . , fp(·) are assumed to be smooth non-linear func-
tions. It is called an additive model because we calculate a sepa-
rate f j for each Xj, and then add together all of their contributions.
Each of these functions are then models using basis expansion:

f j(Xij) = β j1hj1(Xij) + . . . + β jMj hjMj(Xij),

where Mj is the number of basis functions used to model f j. The
size of the model is limited by the number of basis functions used
for each component function. Notice that the final form of f (X) is
still linear in terms of h11, . . . , hpMp .

• Selection methods, which adaptively scan the dictionary and include
only those basis functions that contribute significantly to the fit of
the model. Here the variable selection techniques discussed before
(e.g., LASSO etc) are useful. There are other stage-wise greedy
approaches as well – examples are classification and regression
trees (CART), multivariate adaptive regression splines (MARS) and
boosting.

• Regularization methods, where we use the entire dictionary but
restrict the coefficients. Ridge and lasso regressions are a simple
examples of a regularization approach.2 We will also discuss more 2 In fact, lasso is both a regularization

and selection method.sophisticated methods for regularization.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu



ST 563

introduction to nonparametric regression: basis expansions, regularization, local

regression 4

Piecewise Polynomials and Splines

For simplicity, let us assume that we have only one predictor X – we
will relax this assumption in later sections when appropriate. Let us
start with piecewise-constant basis functions: given a set of points
c1, . . . , cM in the domain of X, define

h0(X) = I(X < c1), h1(X) = I(c1 ≤ X < c2), . . . , hM−1 = I(cM−1 ≤ X < cM), hM(X) = I(X > cM).

The boundaries of each regions, c1, . . . , cM, are called knots.
For linear regression, we will then fit a model

Yi = β0 + h1(Xi)β1 + . . . + hM(Xi)βm + εi.

Note that we have omitted h0(·) from the model above. This is
because it is redundant with the interceptEach Xi can be in only
one region [cm−1, cm). Thus, only one of the hm(Xi) will equal to
one, and every other functions will be zero. Therefore, h0(Xi) +

h1(Xi) + . . . + hM(Xi) = 1. Including the intercept will thus intro-
duce multicollinearity. Since the regions [cm−1, cm) are disjoint, the
least squares estimate of βm is simply the sample mean of those Y’s
that have X’s in the m-th region. Also note that when X < c1, then
h1(Xi) = . . . = hM(Xi) = 0. Thus β0 is the mean of the Y’s with X
values in the first region.

To see the piecewise-constant fit in practice, let us revisit the
Boston data, where we regress medv of lstat – see Figure 2.

# Define region boundaries

kn <- quantile(Boston$lstat,

probs = seq(.10, .90, by = .1))

# Basis functions

basis <- cut(Boston$lstat,

breaks = c(-Inf, kn, Inf))

# Linear model fit and plot

out <- lm(Boston$medv ~ basis)

plot(Boston$lstat, Boston$medv,

pch = 19, cex = 0.4,

xlab = "lstat", ylab = "medv")

points(Boston$lstat, out$fitted.values,

pch =15, col="darkorange")

abline(v = kn, lty = 2)

10 20 30

10
20

30
40

50

lstat

m
ed

v

Figure 2: Piecewise-constant fit for
Boston data.

The vertical lines are the the knots. We can see that in each region,
the estimated f (X) is constant.

We can similarly fit a logistic regression model using the same
basis functions as covariates. Consider the South African Heart Dis-
ease data3. The dataset is a subset of the Coronary Risk-Factor Study

3 Available at https://web.stanford.
edu/~hastie/ElemStatLearn/

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

https://web.stanford.edu/~hastie/ElemStatLearn/
https://web.stanford.edu/~hastie/ElemStatLearn/


ST 563

introduction to nonparametric regression: basis expansions, regularization, local

regression 5

(CORIS) baseline survey. The study was carried out in three rural
areas of the Western Cape, South Africa. The aim of the study was
to establish the intensity of ischemic heart disease risk factors in that
high-incidence region. The data represent white males between 15

and 64, and the response variable is the presence or absence of myocar-
dial infarction (MI) at the time of the survey.

heart <- read.table("http://www-stat.stanford.edu/~tibs/ElemStatLearn/datasets/SAheart.data",

sep = ",",

header = TRUE,

row.names = 1)

head(heart)

## sbp tobacco ldl adiposity famhist typea obesity alcohol age chd

## 1 160 12.00 5.73 23.11 Present 49 25.30 97.20 52 1

## 2 144 0.01 4.41 28.61 Absent 55 28.87 2.06 63 1

## 3 118 0.08 3.48 32.28 Present 52 29.14 3.81 46 0

## 4 170 7.50 6.41 38.03 Present 51 31.99 24.26 58 1

## 5 134 13.60 3.50 27.78 Present 60 25.99 57.34 49 1

## 6 132 6.20 6.47 36.21 Present 62 30.77 14.14 45 0

dim(heart)

## [1] 462 10

We use chd as response and sbp (systolic blood pressure) as predictor.
Figure 3 shows the fitted function.

# Define region boundaries

kn_logit <- quantile(heart$sbp,

probs = seq(.1, .9, by = .1))

# Basis functions

basis_logit <- cut(heart$sbp,

breaks = c(-Inf, kn_logit, Inf))

# Logistic model fit and plot

out_logit <- glm(heart$chd ~ basis_logit,

family = binomial())

# Grid for prediction

xgrid <- seq(min(heart$sbp),

max(heart$sbp),

len = 201)

ps <- cut(xgrid,

breaks = c(-Inf, kn_logit, Inf))

pred <- predict(out_logit,

newdata = data.frame(basis_logit = ps))

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu



ST 563

introduction to nonparametric regression: basis expansions, regularization, local

regression 6

# Plot the estimated function

plot(heart$sbp, out_logit$linear.predictors,

pch = 19,

xlab = "sbp", ylab = "f(sbp)")

points(xgrid, pred,

pch =15, col="darkorange", type = "l", lwd=2)

abline(v = kn, lty = 2)

100 120 140 160 180 200 220

−
1.

0
−

0.
5

0.
0

0.
5

sbp

f(
sb

p)

Figure 3: Piecewise-constant fit for SA
heart data.

It is easy to see that we can extend this concept to piecewise-
polynomial by positing a polynomial model for hm(·) in each region.
For example, Figures 4 and 5 show piecewise-linear and piecewise-
quadratic fits for Boston data.

# piecewise-linear fit

outlin <- lm(Boston$medv ~ basis +

basis:Boston$lstat)

# piecewise-quadratic fit

outquad <- lm(Boston$medv ~ basis +

basis:Boston$lstat +

basis:I(Boston$lstatˆ2))

10 20 30

10
20

30
40

50

Boston$lstat

B
os

to
n$

m
ed

v
Figure 4: Piecewise-linear fit for Boston
data.

10 20 30

10
20

30
40

50

Boston$lstat

B
os

to
n$

m
ed

v

Figure 5: Piecewise-quadratic fit for
Boston data.

One drawback of this approach is that the estimated function is
discontinuous at the boundaries of the regions, c1, . . . , cM. Except in
special cases, we would typically prefer piecewise-polynomials that
are restricted to be continuous at the knots. For example, if we have
only two regions, that is, only one knot c, a piecewise-linear functions
have the form

h1(X) = (β0 + Xβ1)I(X < c), h1(X) = (β2 + Xβ3)I(c ≤ X).

With the restriction that the overall function is continuous at c, we
have an additional condition that h1(·) has the same value as h2(·) at
X = c, that is,

β0 + cβ1 = β2 + cβ3.

Thus, instead of four original parameters β0, . . . , β3, we will have
three free parameters with the additional restriction of continuity.

It can be shown that a more direct way to proceed in this case is to
use a basis that incorporates the continuity constraints,

h1(X) = 1, h2(X) = X, h3(X) = (X− c)+,

where t+ = 0 if t ≤ 0, t otherwise. In the general case with M knots,
c1, . . . , cM, it can be shown that the continuity constraints can be
incorporated by adding (X − cm)+ terms to the basis – for piecewise-
linear functions we can use

h1(X) = 1, h2(X) = X, h3(X) = (X− c1)+, . . . , hM+2(X) = (X− cM)+,

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu



ST 563

introduction to nonparametric regression: basis expansions, regularization, local

regression 7

We often prefer smoother functions, and these can be achieved
by increasing the order of the local polynomial. For a d-th degree
piecewise-polynomial model with M knots, we use the basis func-
tions,

h1(X) = 1, h2(X) = X, , . . . , hd+1(X) = Xd, , hd+2(X) = (X− c1)
d
+, . . . , hd+M+1(X) = (X− cM)d

+.

The terms (X− ck)
d
+ are known as truncated power basis functions.

In spline literature, we also call the formulation above to have
order d + 1. Thus piecewise-constant and linear splines have orders
1 and 2, respectively. Typically, we use piecewise-constant, linear
and cubic (order-1, 2, and 4) splines in practice. Thus a order-(d +

1) spline with M knots needs d + M + 1 basis functions including
intercept. The number d + M + 1 (the total number of basis functions)
is called degrees of freedom. For example, a cubic spline with 4 knots
has degrees of freedom 3 + 4 + 1 = 8.

These splines with fixed knots are also known as regression splines.
One needs to select the order/degree of the spline, the number of knots
and their placement. One simple approach is to parameterize a family
of splines by the number of basis functions, and have the X observa-
tions determine the positions of the knots. Placing the knots at spe-
cific quantiles of observed X values is often a reasonable approach.

Since the space of spline functions of a particular order and knot
sequence is a vector space, there are many equivalent bases for rep-
resenting them.4 While the truncated power basis is conceptually 4 Just as there are for ordinary polyno-

mials.simple, it is not too attractive numerically: powers of large numbers
can lead to severe rounding problems. The B-spline basis allows for
efficient computations even when the number of knots is large.

In R, we can use the function bs() in the splines library. Below
we fit a cubic spline to Boston data.

library(splines)

# Define region boundaries

kn <- quantile(Boston$lstat,

probs = seq(.10, .90, by = .1))

# Cubic splines basis functions

basis <- bs(Boston$lstat,

degree = 3,

knots = kn)

# Linear model fit

outbs <- lm(Boston$medv ~ basis)

10 20 30

10
20

30
40

50

lstat

m
ed

v

Figure 6: Cubic spline fit of Boston
data.

Similarly, we fit a cubic spline to the SA heart data below. We use
two internal knots for this fit. Figure 7 shows the estimated function.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu



ST 563

introduction to nonparametric regression: basis expansions, regularization, local

regression 8

# Basis with 3 knots

basis_cubic <- bs(heart$sbp, df = 6)

# logistic fit

heart_logit <- glm(heart$chd ~ basis_cubic,

family = binomial())

# Plot the estimated f of the observed data

plot(heart$sbp, heart_logit$linear.predictors,

xlab = "sbp", ylab = "f(sbp)", pch=19)

# grid for prediction

xnew <- seq(min(heart$sbp),

max(heart$sbp),

by = 1)

ps <- predict(basis_cubic, newx = xnew)

# Estimated function

fest <- cbind(1, ps) %*% heart_logit$coefficients

lines(xnew, fest, lwd = 2, col = "darkorange")

100 120 140 160 180 200 220

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

sbp

f(
sb

p)

Figure 7: Cubic spline fit with two
knots of the SA heart data.

Natural Cubic Splines

It is well known that polynomial fits can be erratic near boundaries.
Also extrapolating beyond observed data range is generally not ad-
visable. These issues are even more pronounced in spline fits. The
polynomials fit beyond the boundary knots behave even more wildly
than the corresponding global polynomials in that region.

A natural cubic spline adds additional constraints: the function is
linear beyond the boundary knots (in the region where X is smaller
than the smallest knot, or larger than the largest knot). This con-
straint frees up four degrees of freedom (two constraints each in both
boundary regions). This can be used to include more knots in the
interior region. This additional constraint means that natural splines
generally produce more stable estimates at the boundaries.

A natural cubic spline with M knots is represented by M basis
functions (equivalently, degrees of freedom is M). One can start from
a basis for cubic splines, and derive the reduced basis by imposing
the boundary constraints. For example, starting from the truncated
power basis, the basis functions for natural cubic spline are

N1(X) = 1, , N2(X) = X, , Nm+2 = dk(X)− dM−1(X),

for m = 1, . . . , M, where

dm(X) =
(X− cm)3

+ − (X− cM)3
+

CM − cm
.

In R, we can use ns() in splines library to create natural cubic

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu



ST 563

introduction to nonparametric regression: basis expansions, regularization, local

regression 9

spline basis functions. For the Boston data, we fit natural cubic spline
as follows.

# Linear model fit

boston_ns <- lm(medv ~ ns(lstat, df = 9),

data = Boston)

# Grid for prediction

xgrid <- seq(min(Boston$lstat), max(Boston$lstat),

len = 101)

pred <- predict(boston_ns,

newdata = data.frame(lstat = xgrid))

# Estimated function plot

plot(Boston$lstat, Boston$medv,

xlab = "lstat", ylab = "medv", pch=19, cex = 0.5)

lines(xgrid, pred,

lwd = 3, col = "darkorange")

10 20 30

10
20

30
40

50

lstat

m
ed

v

Figure 8: Natural cubic spline fit for
Boston data.

For the SA heart data, logistic regression can be fit in a similar
way.

# logistic fit

heart_ns <- glm(chd ~ ns(sbp, df = 6),

data = heart,

family = binomial())

# Grid for prediction

xgrid <- seq(min(heart$sbp), max(heart$sbp),

len = 101)

pred <- predict(heart_ns,

newdata = data.frame(sbp = xgrid))

# Estimated function plot

plot(xgrid, pred,

lwd = 2, type = "l",

xlab = "sbp", ylab = "f(sbp)")

100 120 140 160 180 200 220

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

sbp

f(
sb

p)

Figure 9: Natural cubic spline fit for SA
heart data.

Choosing the Number and Locations of the Knots

We have so far placed knots at equally spaced quantiles of the ob-
served predictor values. Another option is to place more knots in
places where we suspect the function might vary most rapidly, and
to place fewer knots where it seems more stable. In R, bs() and ns()

uses the first option (quantiles) by default.
To choose the number of knots, M, we may test a few values of

M, and choose one value depending on how the final fitted func-
tions looks. Objectively, we can use cross-validation to select number

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu



ST 563

introduction to nonparametric regression: basis expansions, regularization, local

regression 10

of knots/degrees of freedom. For linear regression, we minimize
prediction MSE/MAE, and for logistic regression, we minimize mis-
classification error.

For least squares, leave-one-out CV (LOOCV) becomes an viable
option. An amazing shortcut makes the cost of LOOCV the same
as that of a single model fit. The following formula holds for LOOCV
prediction MSE:

PMSE(λ) =
1
n

n

∑
i=1

(
Yi − Ŷi,M

1− hi,M

)2

,

where where Ŷi,M is the i-th fitted value from the original least
squares fit, and hi,M is the leverage, for a given M. This is like the
ordinary MSE, except the i-th residual is divided by 1− hi. Thus we
can compute LOOCV prediction error for each M from the original
model fit for the whole data using that value of M, without fitting n
models.

Smoothing Splines

Another approach of creating splines is to completely avoid knot
selection problem by using a maximal set of knots. The complexity
of the fit is controlled by regularization. Let us assume Y is continu-
ous. Consider the following problem: among all functions f (·) with
two continuous derivatives, find one that minimizes the penalized
residual sum of squares5 5 The expression takes the “Loss +

Penalty” formulation that we encounter
in the context of ridge regression and
the lasso. The first term is “squared
error” loss function. The second term
is a penalty term that penalizes the
variability in f .

n

∑
i=1
{Yi − f (Xi)}2 + λ

∫
{ f ′′(t)}2 dt,

where λ is a fixed non-negative tuning/smoothing parameter. The first
term measures closeness to the data, while the second term penalizes
curvature in the function, and λ establishes a trade-off between the
two terms.

The notation f ′′(t) indicates the second derivative of the function
f . The first derivative f ′(t) measures the slope of a function at t, and
the second derivative corresponds to the amount by which the slope
is changing. Hence, broadly speaking, the second derivative of a
function is a measure of its roughness: it is large in absolute value if
f (t) is very wiggly near t, and it is close to zero otherwise.6 6 The second derivative of a straight

line is zero; note that a line is perfectly
smooth.

Note that without the second term (equivalently λ = 0), the op-
timal choice of f (·) is a function that interpolates the data, and thus
giving RSS = 0. On the other hand, if λ = ∞, we can not tolerate any
second derivative. Thus the optimal form of f would be linear (i.e.,
zero second derivative). This would result in a ordinary least squares

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu



ST 563

introduction to nonparametric regression: basis expansions, regularization, local

regression 11

fit. Thus, as λ varies from zero to infinity, the fitted function varies
from very rough to very smooth, and the hope is that λ indexes an
interesting class of functions in between.

The criterion above is defined on an infinite-dimensional func-
tion space.7 It can be shown that the minimization problem has an 7 In fact, a Sobolev space of functions

for which the second term is defined.explicit, finite-dimensional, unique minimizer: a natural cubic spline
with knots at the unique values of Xi, i = 1, . . . , n. At face value it
seems that the family is still over-parametrized, since there are as
many as n knots/degrees of freedom! However, the penalty term
translates to a penalty on the spline coefficients, which are shrunk
some of the way toward the linear fit. The value of the tuning param-
eter λ controls the level of shrinkage.

An equivalent way to specify smoothing is via effective degrees of
freedom. Recall, even if we have n knots, the regression coefficients
are shrunk, and λ controls the amount of shrinkage. So n is not quite
the degrees of freedom here. Usually degrees of freedom refer to the
number of free parameters, such as the number of coefficients fit in
a polynomial or cubic spline. Instead, we define effective degrees
of freedom, d fλ. It is possible to show that as λ increases from 0 to
infinity, d fλ decrease from n to 2 (degrees of freedom for a linear fit).
Hence d fλ is a measure of the flexibility of the smoothing spline – the
higher it is, the more flexible (and the lower-bias but higher-variance)
the smoothing spline. Formally, it can be shown that the estimated
function f is a linear combination of the response values: for a fixed
λ

[ f̂ (X1), . . . , f̂ (Xn)]
T = SλY,

where Sλ is an n× n matrix. The effective degrees of freedom is

d fλ = trace(Sλ) = {Sλ}11 + . . . + {Sλ}nn.

Thus, instead of specifying λ, one can specify effective degrees of
freedom.

In R, we can use the function smooth.spline() to fit smoothing
splines.

boston_ss <- smooth.spline(Boston$lstat, Boston$medv,

lambda = 1/1000)

boston_ss$df

## [1] 9.56832

boston_ss <- smooth.spline(Boston$lstat, Boston$medv,

df = 5)

boston_ss$lambda

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu



ST 563

introduction to nonparametric regression: basis expansions, regularization, local

regression 12

## [1] 0.01968027

Figure 10 shows fitted function for Boston data for three different
values of λ, equivalently different effective degrees of freedom.

10 20 30

10
20

30
40

50

lstat

m
ed

v

lambda

1/1000
1/10
100

df

9.57
3.61
2.01

Figure 10: Smoothing spline fit for
three different lambda values, and
the corresponding effective degrees of
freedom.

Selection of smoothing parameter λ

We can use cross-validation again to select λ – we can find the value
of λ that makes the cross-validated prediction MSE as small as pos-
sible. It turns out that the leave-one-out cross-validation (LOOCV)
RSS can be computed very efficiently for smoothing splines, with
essentially the same cost as computing a single fit, using the following
formula:

RSSloocv(λ) =
n

∑
i=1
{Yi − f̂ (−i)

λ (Xi)}2 =
n

∑
i=1

[
Yi − f̂λ(Xi)

1− {Sλ}ii

]2

,

where f̂ (−i)
λ (·) is the estimated function based on all of the training

observations except for the i-th observation (Xi, Yi). In contrast, f̂λ(·)
indicates the smoothing spline function fit to all of the training obser-
vations. Therefore, that we can compute each of these leave-one-out
fits using only the original fit to all of the data.

In R, we can use the option CV = TRUE without specifying df or
lambda to get the LOOCV results.

boston_ss_cv <- smooth.spline(Boston$lstat, Boston$medv,

cv = TRUE)

boston_ss_cv

## Call:

## smooth.spline(x = Boston$lstat, y = Boston$medv, cv = TRUE)

##

## Smoothing Parameter spar= 0.8705834 lambda= 0.0004655975 (12 iterations)

## Equivalent Degrees of Freedom (Df): 11.3742

## Penalized Criterion (RSS): 11524.64

## PRESS(l.o.o. CV): 27.38213

10 20 30

10
20

30
40

50

lstat

m
ed

v

Figure 11: Smoothing spline fit with
lambda/df chosen by LOOCV

We can fit smoothing splines for logistic regression using the gam()

function in the gam library. The smoothing splines can be specified
using the s() function as follows.8

8 We could have used gam() in the
Boston data as well.

library(gam)

out <- gam(chd ~ s(sbp, df = 4),

data = heart,

family = binomial())

plot(out)

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu



ST 563

introduction to nonparametric regression: basis expansions, regularization, local

regression 13

100 120 140 160 180 200 220

0.
0

0.
5

1.
0

1.
5

sbp

s(
sb

p,
 d

f =
 4

)

Figure 12: Smoothing spline fit with
logistic regression in SA heart data.

Here we have fit a smoothing spline to sbp with 4 degrees of freedom
– by default gam() will exclude intercept when computing degrees of
freedom.

Local Regression

Local regression refers to a class of regression techniques that achieve
flexibility in estimating the regression function f (X) by fitting a dif-
ferent but simple models separately at each target point x0. We have
already seen one example of such a method – the KNN regression.
Recall, KNN takes only x values “nearest” to x0, and estimates f (x0)

based on those points. Observations far away from x0 have no impact
on estimation of f (x0), thus making KNN a local regression method.
In general, local regression uses only those observations close to the
target point x0 to fit the simple model, and in such a way that the
resulting estimated function f̂ (·) is smooth.

Suppose we have only one predictor, and observed data (Yi, Xi) for
i = 1, . . . , n. Recall that KNN estimates f (x0) as

f̂ (x0) =
1
K ∑

Xi∈NK(x0)

Yi,

where NK(x0) is the set of K observations with Xi values nearest to
x0. As we have seen before, the resulting estimated function is rough
and not continuous – see Figure 13 for an example of 20-NN fit to
the Boston data with medv as response and lstat as predictor. The
estimated function is plotted on a equally spaced grid of points in
[2, 37].

10 20 30

10
20

30
40

50

Lower status of the population (percent)

M
ed

ia
n 

va
lu

e 
of

 o
w

ne
r 

oc
cu

pi
ed

 h
om

es

Figure 13: 20-NN fit for Boston data.

This discontinuity is unnecessary and often unwanted. It turns
out the source of the problem is that all the K points nearest to the
target x0 have the same weight, 1/K, when computing f̂ (x0). Rather
than giving them the same, equal, weight, we can give more weight
to points closer to x0, and less for distant points. Another approach
could be, rather than using K nearest points, we can pre-set a win-
dow [x0 ± h], and use observations only within this window to form
our estimator f̂ (x0) with same weighting scheme as mentioned be-
fore. Figure 14 shows the two different methods.

In general, for both the methods above, we can consider a general
form of the estimator:

f̂ (x0) =
∑n

i=1 wiYi

∑n
i=1 wi

,

where wi are pre-specified wights designed in such a way that points
nearest to x0 get more weight than points further from x0, that is,

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu



ST 563

introduction to nonparametric regression: basis expansions, regularization, local

regression 14

10 20 30

0
10

20
30

40
50

Fixed window size, varying K

x

y

10 20 30

0
10

20
30

40
50

Fixed K, varying window size

x

y

Figure 14: Examples of local weighting
schemes. The left plot uses a fixed
window [x0 − h, x0 + h] with h = 2,
and thus the number of points in the
window may vary depending on the
value of x0. The right panel uses fixed
number of neighbors, K = 30. Thus
depending on x0, the window size
changes.

we can assign weights that die off smoothly with distance from the
target point.

In general, we specify the weights using kernel function, D(·), as

wi = D(|x0 − Xi|/h),

where h is a smoothing parameter that determines the the width of
the local neighborhood. The kernel function is usually a positive and
symmetric function that decays at the tails. Thus, when |x0 − Xi|/h
is closer to zero (i.e., Xi is closer to x0), we have higher value of wi.
In contrast, for larger values of |x0 − Xi|/h, the weight wi would be
lower.

The smooth kernel fit still has problems, however, as exhibited
in Figure 14. When we take a weighted average of the Y values for
each window, we are essentially assuming the f (x) ≈ f (x0) for all
the x values in the window. This approximation might lead to large
bias, especially near the boundaries. For example, in the left panel
of Figure 14, a local average (also called local constant) fit might be
reasonable for x0 = 20, but not quite reasonable for x0 = 5. Fitting a
straight line, rather than a constant, is much more reasonable here. In
other words, we want to approximate f (x) ≈ a + xb in each window
[x0 − h, x0 + h]. Hence f̂ (x0) = â + x0b̂. Figure 15 shows examples of
two target points, one near boundary and one in the middle of data
scatter – this is for fixed window approach. This approach is called
local linear regression.

It can be shown that, formally, we can fit a weighted least squares
regression by minimizing

n

∑
i=1

wi(Yi − a− Xib)2,

with respect to a and b, and estimate f (·) accordingly. We can easily

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu



ST 563

introduction to nonparametric regression: basis expansions, regularization, local

regression 15

0.0 0.2 0.4 0.6 0.8 1.0

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

1
.5

O

O

O

O

O

OO

O

O

O

O

O

O

O

O

O
OO

O

O

O

O

O

O

O

O

OO

O

O

O
O

O

O

O

O

O

O

OO

O

O

O

O

O

O

O

O

O

O

OO

O

O

O

O

O

O
O

O

O

O

O

OO

O

O

OO

O

O

O

OO

O

O

O

O

O

O

O

OO

O

O

O

OO

O

O

O

O

OO

O

O

O

O

O

O

O

O

O

O

O

OO

O

O

O

O

O

O

O

O

O
OO

O

O

O

O

0.0 0.2 0.4 0.6 0.8 1.0
−

1
.0

−
0
.5

0
.0

0
.5

1
.0

1
.5

O

O

O

O

O

OO

O

O

O

O

O

O

O

O

O
OO

O

O

O

O

O

O

O

O

OO

O

O

O
O

O

O

O

O

O

O

OO

O

O

O

O

O

O

O

O

O

O

OO

O

O

O

O

O

O
O

O

O

O

O

OO

O

O

OO

O

O

O

OO

O

O

O

O

O

O

O

OO

O

O

O

OO

O

O

O

O

OO

O

O

O

O

O

O

O

O

O

O

O

OO

O

O

O
O

O

O

O

O

O

O

OO

O

O

O

O

O

O

O

O

O

O

OO

O

O

O

O

O

O
O

O

O

O

O

OO

O

O

OO

O

O

Local Regression
Figure 15: Example of local weights for
for two target points, one near bound-
ary (left) and one in the middle (right)
of data scatter. The orange colored
points are local to the target point x0,
represented by the orange vertical line.
The yellow bell-shape superimposed
on the plot indicates weights assigned
to each point, decreasing to zero with
distance from the target point. The
blue curve represents f (x) from which
the data were generated, and the light
orange curve corresponds to the local
regression estimate f̂ (x).

extend the local fit using polynomial of any degree. Such a general
method is called local polynomial regression.

There are quite a few popular kernel functions – examples of four
kernel functions are shown in Figure 16:

Uniform: D(t) = I(−1 ≤ t ≤ 1)

Epanechnikov: D(t) =
3
4
(1− t2) I(−1 ≤ t ≤ 1)

Tri-cube: D(t) = (1− |t|3)3 I(−1 ≤ t ≤ 1)

Gaussian: D(t) = exp(−t2/2)

The uniform, Epanechnikov and tri-cube kernels have compact sup-
port, and thus assign wi = 0 when Xi is outside [x0 − h, x0 + h].
The Gaussian kernel function on the other hand is a popular non-
compact kernel that assigns weights to all data points (even outside
[x0 − h, x0 + h]). The uniform kernel assigns same weights to every
point in [x0 − h, x0 + h], but zero outside. Thus uniform kernel is
essentially performing KNN regression.

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

df

Figure 16: Form of four kernel func-
tions: Uniform (green dotted), Epanech-
nikov (black solid), Tri-cube (red
dashed), and Gaussian (blue dash-
dotted).

In order to perform local regression, there are a number of choices
to be made: the kernel function D, the degree of polynomial to fit,
the window size h or the number of neighbors K. The choices of
D and degree of polynomial has some impact on the fit. The most
important choice is that of h or K: it controls the flexibility of the non-
linear fit. The smaller the value of h or K, the more local and wiggly
will be our fit; alternatively, a very large value of h or K will lead to
a global fit to the data using all of the training observations. We can
again use cross-validation to choose h or K.

An example of a local linear fit of the Boston data is shown below.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu



ST 563

introduction to nonparametric regression: basis expansions, regularization, local

regression 16

## Epanechnikov kernel

epan <- function(t){

0.75*(1 - tˆ2)*I(abs(t) <= 1)

}

## Local linear fitting function

kfit_linear <- function(x0, x, y, h){

# kernel weights

w <- epan(abs(x0 - x)/h)

w <- w / sum(w)

# Linear fit

out <- lm(y ~ x, weights = w)

# f(x0)

fx0 <- predict(out, newdata = data.frame(x = x0))

return(fx0)

}

## Grid for estimation of f

xgrid <- seq(2, 37, len=201)

## Compute fhat over grid with h = 5

fhat <- sapply(xgrid, kfit_linear,

x = Boston$lstat,

y = Boston$medv,

h = 5)

plot(Boston$lstat, Boston$medv,

pch=19,

col = "darkgray",

xlab = "Lower status of the population (percent)",

ylab = "Median value of owner occupied homes")

lines(xgrid, fhat, lwd=2)

10 20 30

10
20

30
40

50

Lower status of the population (percent)

M
ed

ia
n 

va
lu

e 
of

 o
w

ne
r 

oc
cu

pi
ed

 h
om

es

Figure 17: Local linear fit of Boston data
with h = 5.

Alternatively, We can also use the lo() function in gam library. It
uses fixed number of neighbors (K) as the smoothing parameter. The
relevant argument is span which is K/n.

out <- gam(medv ~ lo(lstat, span = 0.2), data = Boston)

xgrid <- seq(2, 37, len=201)

fhat <- predict(out, newdata = data.frame(lstat = xgrid))

plot(Boston$lstat, Boston$medv,

pch=19, col = "darkgray",

xlab = "Lower status of the population (percent)",

ylab = "Median value of owner occupied homes")

lines(xgrid, fhat, lwd=2)

10 20 30

10
20

30
40

50

Lower status of the population (percent)

M
ed

ia
n 

va
lu

e 
of

 o
w

ne
r 

oc
cu

pi
ed

 h
om

es

Figure 18: Local regression fit of Boston
data using gam.

We can also fit a local linear logistic regression model by adding
the argument family = binomial(). An example using the SA hear
data is shown below.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu



ST 563

introduction to nonparametric regression: basis expansions, regularization, local

regression 17

out <- gam(chd ~ lo(sbp, span = 0.3),

data = heart,

family = binomial())

xgrid <- seq(105, 215, len=201)

fhat <- predict(out,

newdata = data.frame(sbp = xgrid))

plot(xgrid, fhat, lwd=2, type = "l",

xlab = "sbp",

ylab = "log-odds")

120 140 160 180 200

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

sbp

lo
g−

od
ds

Figure 19: Local regression fit of SA
heart data using gam.

Local regression can be generalized to incorporate multiple fea-
tures X1, X2, . . . , Xp as well. One very useful generalization involves
fitting a multiple linear regression model that is global in some vari-
ables (e.g., linear effects), but local in another, such as time. Such
models are called varying coefficient models. Local regression can be
also generalized for bivariate problems, with a pair of variables X1

and X2, rather than one. We can simply use two-dimensional neigh-
borhoods, and fit bivariate linear regression models using the ob-
servations that are near each target point in two-dimensional space.
Theoretically the same approach can be implemented in higher di-
mensions, using linear regressions fit to p-dimensional neighbor-
hoods. However, local regression can perform poorly if p is much
larger than about 3 or 4 because there will generally be very few
training observations close to x0.

An example of a bivariate local regression is shown below using
Boston data.

out <- gam(medv ~ lo(lstat , nox , span = 0.5),

data = Boston)

grid <- expand.grid(lstat = seq(2, 37, len=201),

nox = seq(0.4, 0.85, len = 101))

fhat <- predict(out, newdata = grid)

contour(seq(2, 37, len=201), seq(0.4, 0.85, len = 101),

fhat, nlevels = 50,

xlab = "lstat", ylab = "nox")

lstat

no
x

 8 

 9 

 10 

 11 

 12 

 13 

 14 
 15 

 16 

 17 
 18 

 19 

 2
0  2

1 

 2
2 

 2
3 

 2
4 

 2
5 

 2
6 

 2
7 

 2
8 

 2
9 

 3
0 

 3
1 

 3
2 

 3
3 

 3
4 

 3
5 

 3
6 

 3
7 

 3
8 

 3
9 

 4
0 

 4
1 

 4
2 

 4
3 

 4
4 

 4
5 

 4
6 

 4
7 

 4
8 

 4
9 

 5
0 

 5
1 

 5
2 

 5
3 

5 10 15 20 25 30 35

0.
4

0.
5

0.
6

0.
7

0.
8

Figure 20: Contour plot of a bivariate
local regression fit of the Boston data.

Generalized Additive Models

Generalized additive models (GAMs) provide a general framework
for extending a standard linear model by allowing non-linear func-
tions of each of the variables, while maintaining additivity. In this
framework, we assume that we have p predictors Xi = (Xi1, . . . , Xip).

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu



ST 563

introduction to nonparametric regression: basis expansions, regularization, local

regression 18

In GAM, we model

f (Xi) = β0 +
p

∑
j=1

f j(Xij),

where f j(·) are assumed to be smooth non-linear functions. then
we can use any of the previously discussed methods (polynomial
regression, piecewise-polynomial splines, natural cubic splines, or
smoothing splines) to model f j(·).

In R, we can use the gam() function in the gam library to fit GAMs
using smoothing splines. Let us use Boston data again but with two
covariates, lstat, and nox. Figure 21 shows the estimated functions.

out <- gam(medv ~ s(lstat, df = 4) + s(nox, df = 4),

data = Boston)

par(mfrow = c(2,1), mar = c(4,2,1,2))

plot(out, terms = "s(lstat, df = 4)", se = TRUE)

plot(out, terms = "s(nox, df = 4)", se = TRUE)

10 20 30

−
10

0
10

20

lstat

s(
ls

ta
t, 

df
 =

 4
)

0.4 0.5 0.6 0.7 0.8

−
4

−
2

0
2

nox

s(
no

x,
 d

f =
 4

)

Figure 21: Estimated effects of lstat and
nox in the Boston data using GAM.

We call the plot() function with argument se = TRUE. This produces
point-wise error bands (estimate ± two-SE) for the estimated func-
tions.

If we want to fit natural cubic splines instead, we can simply use
the lm() function again but with two sets of natural spline basis,
as follows. Figure 22 shows the estimated functions. Even though
we are using lm() we can still use plot.Gam() to plot the estimated
functions.

out <- lm(medv ~ ns(lstat, df = 5) + ns(nox, df = 5),

data = Boston)

par(mfrow = c(2,1), mar = c(4,2,1,2))

plot.Gam(out, se = TRUE)

10 20 30

−
10

0
10

20
30

lstat

ns
(ls

ta
t, 

df
 =

 5
)

0.4 0.5 0.6 0.7 0.8

−
6

−
4

−
2

0
2

nox

ns
(n

ox
, d

f =
 5

)

Figure 22: Estimated effects of lstat and
nox in the Boston data using GAM.

To demonstrate GAM in logistic regression, we use sbp, tobacco,
ldl, famhist, obesity and age as covariates. Here famhist is a cat-
egorical variable with two levels, it is coded by a simple binary or
dummy variable, and is associated with a single coefficient in the fit
of the model. The effects of the other predictors are modeled using
natural splines with 4 degrees of freedom.

fh <- as.factor(ifelse(heart$famhist == "Present", 1, 0))

out <- glm(chd ~ ns(sbp, df = 4) +

ns(tobacco, df = 4) +

ns(ldl, df = 4) +

ns(obesity, df = 4) +

ns(age, df = 4) +

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu



ST 563

introduction to nonparametric regression: basis expansions, regularization, local

regression 19

fh,

data = heart,

family = binomial())

par(mfrow = c(1,6), mar = c(4,2,1,2))

plot.Gam(out, se = TRUE, scale = 10)

100 140 180 220

−
4

−
2

0
2

4
6

sbp

ns
(s

bp
, d

f =
 4

)

0 5 10 15 20 25 30

0
2

4
6

8

tobacco

ns
(t

ob
ac

co
, d

f =
 4

)

2 4 6 8 10 14

−
4

−
2

0
2

4

ldl

ns
(ld

l, 
df

 =
 4

)

15 25 35 45

−
2

0
2

4
6

obesity

ns
(o

be
si

ty
, d

f =
 4

)

20 30 40 50 60

−
6

−
4

−
2

0
2

age

ns
(a

ge
, d

f =
 4

)

−
4

−
2

0
2

4

pa
rt

ia
l f

or
 fh

fh

0 1

Figure 23: Estimated effects of the
predictors in the SA heart data using
GAM.These effects at first may come as a surprise, but an explanation lies

in the nature of the retrospective data. These measurements were
made sometime after the patients suffered a heart attack, and in
many cases they had already benefited from a healthier diet and
lifestyle, hence the apparent increase in risk at low values for obesity
and sbp.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu


	Introduction
	Piecewise Polynomials and Splines
	Smoothing Splines
	Local Regression
	Generalized Additive Models

