
Classification
Arnab Maity

NCSU Statistics ~ 5240 SAS Hall ~ amaity[at]ncsu.edu

Contents

Introduction 2

Generative Models 3

Example: one predictor 4

Example: multiple predictors 8

Different clasification methods 14

LDA vs. QDA 15

Naive Bayes classifier 17

Logistic Regression 19

Model 19

Odds and log-odds 19

Classification 20

Hypothesis testing and confidence intervals 23

Logistic regression with multiple classes 25

Softmax coding 27

Issues to consider 28

Comparison of a few classifiers 30

High-Dimensional Problems 32

ST 563 classification 2

Introduction

The problems of separating two or more groups/classes, and allocat-
ing new objects in previously defined classes are called discrimina-
tion and classification.

• Discrimination: finding the features that separate known groups
in a multivariate sample. This can be either done graphically or
algebraically. We try to find discriminants (features) whose numeric
values can separate the classes as much as possible.

• Classification: developing a rule to allocate a new object into one
of a number of known groups. We use such classification rules to
classify objects into pre-defined classes. Here the emphasis is on
defining the rule to optimally assigning objects to classes.

A classification rule is based on the features that separate the groups,
so the two goals often (but not always) overlap. For example, KNN
classifier gives us a rule to allocate objects to classes, but does not
give us any discriminants.

Recall that we have learned about the Bayes rule/classifier before.
Suppose that we have a classification problem with K classes. Here
Y denotes the class label, taking possible value among 1, . . . , K, and
X = (X1, . . . , Xp)T denotes the set of predictors. The Bayes classifier,
predicts a new observation x0 by Ŷ such that

Ŷ = k if P(Y = k|X = x0) is maximum among P(Y = 1|X =

x0), . . . , P(Y = K|X = x0).

We also know that the Bayes classifier minimizes1 the expected pre- 1 Interested readers can consult Elements
of Statistical Learning by Hastie et
al. (2017).

diction error for classification,

E[I(Y 6= Ŷ)].

The misclassification error rate of the Bayes classifier is called the
Bayes error rate. For a given x0, Bayes error rate is

1−max{P(Y = 1|X = x0), . . . , P(Y = K|X = x0)}

The overall Bayes error rate is

1− E[max{P(Y = 1|X = x0), . . . , P(Y = K|X = x0)}].

The Bayes rate is analogous to the irreducible error that we encoun-
tered in the regression setting.

Thus, it is natural to try to estimate/model the conditional proba-
bilities P(Y = k|X) using the data, and use them to create classifiers.
In this chapter, we discuss two approaches of obtaining estimates of
P(Y = k|X):

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 classification 3

• Directly estimating/modeling P(Y = k|X): An example of direct esti-
mation of P(Y = k|X) is the KNN classification technique, where
the conditional probability is estimated by taking a majority vote
from K nearest point to x0. Another example is logistic regression
model, where the conditional probability is modeled using trans-
formations of linear combinations of X of the form:2 2 In general, we can use g(β0 + X1β1 +

. . . + Xpβp) where g(·) is a known
function, called a link function. Logistic
regression uses g(t) = et/(1 + et).
Choosing a different g(·) gives rise
to other regression technique such as
probit regression which uses the CDF of
a standard normal distribution as g(·).

P(Y = k|X) = eβ0+X1β1+...+Xp βp

1 + eβ0+X1β1+...+Xp βp
.

Therefore it is sufficient to estimate the coefficients β0, β1, . . . , βp to
obtain estimates of P(Y = k|X).

• Generative models: In this approach, we model the distribution of
X|Y = k for k = 1, . . . , K, that is, we model how the input features
are distributed/generated in each class. Then we apply Bayes
theorem3 to obtain expression for P(Y = k|X). This approach is the 3 Not to be confused with Bayes rule/-

classifier. Given two events A and B,
with P(B) > 0, Bayes theorem states:

P(A|B) = P(B|A)P(A)

P(B)
.

basis of many discriminant analysis methods.

In what follows, we start our discussion with generative models,
and then explore logistic regression.

Generative Models

In general, we have the following setup:

• For i-th item, we observe predictors Xi = (Xi1, . . . , Xip)
T , and a

class label Yi (taking values in 1, 2, . . . , K).4 4 Even though we specify the groups by
“1” and “2”, they are not numbers. Y is
actually a categorical variable.• The conditional density function of Xi|Yi = k is fk(·), k = 1, 2, . . . , K.

• P(Yi = k) = pk, such that p1 + . . . + pK = 1. These are the
prior probabilities of the classes. In other words, probability that a
randomly chosen observation comes from the prior k-th class is pk.

Assume that the sample size of the k-th group is nk. Denote n =

n1 + . . . + nK.
A classification rule must give an prediction of group member-

ship for any X. By Bayes theorem, we obtain

P(Yi = k|Xi = x) =
pk fk(x)

p1 f1(x) + . . . + pK fK(x)

Thus, given a data vector x, we can compute the posterior probabil-
ity of being classified into class “k” using the formula above. Thus a
sample will be classified to a class that has the highest posterior proba-
bility.5 5 Recall that this is the Bayes rule.

Notice that the denominator in the expression of P(Yi = k|Xi = x)
is same for any value of k. Thus P(Yi = k|Xi = x) is highest if the

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 classification 4

numerator pk fk(x) is highest. The the classification rule above is
equivalent to assigning x to class k if pk fk(x) is maximum.

However, the density functions fk(x) and the prior probabilities
pk are unknown. We can estimate pk by relative proportion of the
sample size of the k-th class compared to total sample size,

p̂k = nk/n.

For the unknown densities, we need to estimate them from the data.

Example: one predictor

To illustrate the basic ideas, consider the wines data set available at
the UCI machine learning repository.6. The dataset contains quanti- 6 https://archive.ics.uci.edu/ml/

datasets/wine; also available with the
textbook Applied Multivariate Statistics
with R by Zelterman

ties of 13 constituents found in each of the three types (cultivars) of
wines.

Read the data

wines <- read.table("data/Wines.txt", header = TRUE)

classes of wine

table(wines$Class)

##

1 2 3

59 71 48

Alcohol

Malic

Ash

Alcal

Proline

Figure 1: Pairs-plot of a few variables of
the wine data.

A pairs-plot of a few variables of the wine data is shown in Figure 1.
To fix our ideas, consider the wine data with only K = 2 classes (1
and 2) and with only the Alcohol variable.

Alcohol for classes 1 and 2

alc <- wines$Alcohol[wines$Class == 1 | wines$Class == 2]

newclass <- wines$Class[wines$Class == 1 | wines$Class == 2]

new data set

wine_small <- data.frame(Alcohol = alc,

Class = newclass)

−2 −1 0 1 2

13
.0

13
.5

14
.0

14
.5

Class = 1

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

−2 −1 0 1 2

11
.0

12
.0

13
.0

Class = 2

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 2: QQ plot for Alcohol for the
two groups.

The Q-Q plots of Alcohol for the two groups (Figure 2) show
fairly linear pattern (except may be only a few points). It is not un-
reasonable to assume that the data from both classes follow normal
distributions with possibly different means and variances. Thus in
this case we have:

• Two classes: K = 2
• One predictor: Xi = Alcohol content of a wine sample

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

https://archive.ics.uci.edu/ml/datasets/wine
https://archive.ics.uci.edu/ml/datasets/wine

ST 563 classification 5

• The conditional density function of Xi|Yi = k is normal:

Xi|Yi = 1 ∼ N(µ1, σ2
1), Xi|Yi = 2 ∼ N(µ2, σ2

2)

where we have possibly different means, µk, and variance, σ2
k . The

normal density function has the form

fk(x) =
1√

2πσ2
k

exp

{
− 1

2σ2
k
(x− µk)

2

}
.

Here the sample sizes are n1 = 59 and n2 = 71, with n = 130.

To estimate the densities, we need to estimate the unknown mean
and variance parameters:

µ̂k = sample mean of Xi’s from the k-th group

σ̂2
k = sample variance of Xi’s from the k-th group

sample means

mean_class <- aggregate(Alcohol ~ Class, mean, data = wine_small)

mean_class

Class Alcohol

1 1 13.74475

2 2 12.27873

sample variances

var_class <- aggregate(Alcohol ~ Class, var, data = wine_small)

var_class

Class Alcohol

1 1 0.2135598

2 2 0.2894055

0.00

0.25

0.50

0.75

10 12 14 16

grid

D
en

si
ty Class

1
2

Figure 3: Estimated distribution of
Alcohol for the two groups.

With the assumption of normality, the estimated density functions
are

f̂k(x) =
1√

2πσ̂2
k

exp

{
− 1

2σ̂2
k
(x− µ̂k)

2

}
,

which are shown in Figure 3.
Finally, the estimated prior probabilities, p̂k, are as follows.

p <- table(wine_small$Class)/nrow(wine_small)

p

##

1 2

0.4538462 0.5461538

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 classification 6

Thus for a given wine sample with Alcohol value, x, we will clas-
sify the sample to group 1 if p̂1 f̂1(x) > p̂2 f̂2(x), assign to class 2

otherwise. For example, suppose we have new data x = 12.

new data

x <- 12

density evaluated at x

f <- dnorm(x,

mean = mean_class$Alcohol,

sd = sqrt(var_class$Alcohol))

p_k * f_k

pf <- p * f

round(pf, 3)

##

1 2

0.000 0.354

We see that p̂2 f̂2(x) > p̂1 f̂1(x). Thus the sample with x = 12 will be
assigned to class 2. The posterior probabilities are as follows.

post_prob <- pf / sum(pf)

round(post_prob,3)

##

1 2

0.001 0.999

Thus P̂(Y = 1|X = 12) = 0.001, and P̂(Y = 2|X = 12) = 0.999. We
can see from Figure 3 that x = 12 lies in the middle of the domain of
the density function of class 2 (blue). Thus it is much more likely that
the new data if generated from the blue density compared to the red
density.

11.5 12.0 12.5 13.0 13.5 14.0 14.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Alcohol content

P
os

te
rio

r
pr

ob
ab

ilt
y

of
 c

la
ss

 1

Figure 4: Estimated posterior proba-
bility of class 1 for a range of values of
alcohol content.

The idea discussed above can be seen clearly if we compute the
posterior probability of class “1” (or “2”) for a range of values of x,
see Figure 4. It seems that there is value c so that the classification
rule presented before can be translated as:

Assign x to class 1 if x > c, assign to class 2 otherwise.

To see this, we see that classification rule: “assign to class 1 if p̂1 f̂1(x) >
p̂2 f̂2(x)” is equivalent to assigning x to class 1 if

log(p̂1) + log(f̂1(x)) > log(p̂2) + log(f̂2(x)).

Substituting the functional form of f̂k(x), we can rewrite the condi-
tion above as

log(p̂1)− log(σ̂1)−
(x− µ̂1)

2

2σ̂2
1

> log(p̂2)− log(σ̂2)−
(x− µ̂2)

2

2σ2
2

.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 classification 7

Define the functions

δ̂k(x) = log(p̂k)− log(σ̂k)−
(x− µ̂k)

2

2σ2
k

, k = 1, 2.

Thus our classification rule is equivalent to assigning x to class 1 if

δ̂1(x) > δ̂2(x).

The functions δ̂k(x) are called discriminant functions. Now we can
determine the decision boundary of the classifier by determining the
value c so that

δ̂1(c) = δ̂2(c).

Simple algebra7 shows that we need to solve the quadratic equation 7 We are solving a quadratic equation

−
(

1
2σ̂2

1
− 1

2σ̂2
2

)
c2 +

(
µ̂1

σ̂2
1
− µ̂2

σ̂2
2

)
c−
(

µ̂2
1

2σ̂2
1
−

µ̂2
2

2σ̂2
2
+ log(p̂1/ p̂2)− log(σ̂1/σ̂2)

)
= 0

For this particular example, the two solutions are c = 13.0729556 and
c = 22.6722904. However, the second solution is outside the range
of the observed data, and the density values of at c = 22.6722904 are
extremely small, 7.875424× 10−82 and 6.5443664× 10−82 for class 1

and 2, respectively. Thus our actual classification boundary is given
by the first solution c = 13.0729556. Thus. we have the classification
rule:

Assign x to class 1 if x > 13.0729556, assign to class 2 otherweise.

The classification method we have discovered during our explo-
ration so far is called the Quadratic Discriminant Analysis (QDA). The
name is due to the fact that the discriminant functions, δ̂k(x) are
quadratic polynomials of x.

QDA can be applied to more than two classes as well. The idea re-
main the same – for a general value of K, we will have K discriminant
functions, δ̂k(x), k = 1, . . . , K. We classify an observation x to class k
if δk(x) is maximum among δ1(x), . . . , δK(x). Equivalently, p̂k f̂k(x) is
maximum. The posterior probabilities are computed as before. As an
example, consider the full wine data with three classes. Estimates of
class means and variances are shown below. The estimated density
functions are shown in Figure 5.

means

xbar <- aggregate(Alcohol ~ Class, mean, data = wines)

xbar <- xbar$Alcohol

xbar

[1] 13.74475 12.27873 13.15375

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 classification 8

variances

vars <- aggregate(Alcohol ~ Class, var, data = wines)

vars <- vars$Alcohol

vars

[1] 0.2135598 0.2894055 0.2811559

0.00

0.25

0.50

0.75

10 12 14 16

grid

D
en

si
ty

Class 1 2 3

Figure 5: Estimated densities of Alcohol
in the three classes in wines data,
assuming normality.

Suppose that the new data has x = 13. The estimated posterior
probabilities are as follows.

x <- 13

p <- table(wines$Class)/nrow(wines)

f <- dnorm(x, mean = xbar, sd = sqrt(vars))

post_prob <- p*f / sum(p*f)

round(post_prob, 3)

##

1 2 3

0.199 0.306 0.495

From the results above, the new sample will be classified into class 3.

Example: multiple predictors

Now let us consider the case where we have more than one predic-
tors. For simplicity, let us start with two predictors (p = 2), Xi1 and
Xi2. To extend QDA to this setting, we need to generalize the normal
distribution to two-dimensions. We call such a distribution a bivariate
normal distribution.

In this situation, denote Xi = (Xi1, Xi2)
T . We say Xi is a random

vector. We can define the mean, µ, of a random vector, Xi, to be the
vector of means of individual predictors:

µ = E(Xi) = (E(Xi1), E(Xi2))
T = (µ1, µ2)

T .

Defining the analogous term for variance, however, requires care.
For one predictor, variance can be quantified by one parameter.
For two predictors, we need to look at their individual variances,
σ2

1 = var(Xi1) and σ2
2 = var(Xi2), as well as their covariance,

σ12 = cov(Xi1, Xi2). In general, we use the variance-covariance ma-
trix of Xi to summarize the variability of Xi:

Σ = cov(Xi) =

(
σ2

1 σ12

σ12 σ2
2

)
,

where the diagonal entries are variances of individual predictors, and
the off-diagonal entry is the covariance between the two predictors.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 classification 9

The random vector X2×1 = (X1, X2)
T follows a bivariate normal

(Gaussian) distribution with mean vector µ = (µ1, µ2)
T and variance-

covariance (positive definite) matrix Σ and denoted as X ∼ N2(µ, Σ) if
its probability density function is8 8 Recall the PDF of univariate normal

distribution, N(µ, σ2) is

fY(y; µ, σ2) =
1√

2πσ2
exp{− 1

2σ2 (y−µ)2}
f (x) = (2π)−1|Σ|−1/2 exp{−(x− µ)TΣ−1(x− µ)/2}.

x1

x2

density

PDF of a bivariate normal distribution

−2 −1 0 1 2

−
2

−
1

0
1

2
3

A random sample of size 100

x1

x2

Figure 6: Density function of a bivariate
normal distribution (left) and a scat-
terplot of a random sample of size 100

from a bivariate normal distribution.

The shape of the PDF (and that of the scatterplot of a random
sample generated from the distribution) is determined by Σ, the
variance-covariance matrix of X. An easy was to visualize the PDF
of a bivariate distribution is to plot the constant probability density
contours.

Constant probability density contours

We define the constant probability density contour (also called
constant-density contour) of a bivariate normal PDF to be
the set of vectors x such that f (x) is constant, These sets are
ellipses that are centered around µ.

Figures 7 – 9 show three examples of bivariate normal distribution
with different variance-covariance patterns. The shape of the density
function, and equivalently the contours, depend on the variance-
covariance structure of Xi1 and Xi2. If the two variables are uncor-
related, the major and minor axes of the elliptical contours will be
parallel to the x- and y-axis. In presence of correlation, the ellipses
will be oriented according the sign/magnitude of the correlation.

More generally, a random vector Xi = (Xi1, . . . , Xip)
T is said for

follow a multivariate normal distribution Np(µ, Σ), where µ is a p× 1
vector and Σ is positive definite matrix, if the PDF of X is

f (x) = (2π)−p/2|Σ|−1/2 exp{−(x− µ)TΣ−1(x− µ)/2}.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 classification 10

x1

x2

density

PDF of a bivariate normal distribution
 v(x1) = v(x2) = 1, cov(x1,x2) = 0

Contour plot

x1
x2

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Figure 7: PDF and contours of a bi-
variate normal distribution with
var(X1) = var(X2) = 1, cov(X1, X2) = 0.
The contours are concentric circles since
X1 and X2 are uncorrelated, and have
the same variance.

x1

x2

density

PDF of a bivariate normal distribution
 v(x1) = 1, v(x2) = 3, cov(x1,x2) = 1

Contour plot

x1

x2

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0
.1

1

−4 −2 0 2 4

−
4

−
2

0
2

4

Figure 8: PDF and contours of a bivari-
ate normal distribution with var(X1) =
1, var(X2) = 3, cov(X1, X2) = 1. The
countours are oriented accoring to the
positive correlation between X1 and X2.
Also, the contours are narrower along
X1 axis comapred to X2 due to var(X1)
being more that var(X2).

x1

x2

density

PDF of a bivariate normal distribution
 v(x1) = 1, v(x2) = 1.3, cov(x1,x2) = −0.5

Contour plot

x1

x2

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Figure 9: PDF and contours of a bivari-
ate normal distribution with v(x1) = 1,
v(x2) = 1.3, cov(x1,x2) = -0.5

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 classification 11

We can show that E(X) = µ and that cov(X) = Σ.
To develop a classifier with p predictors, we again define the ran-

dom vector Xi containing the p predictors for the i-th observation. we
assume that

Xi|Y = k ∼ N(µk, Σk), k = 1, . . . , K,

where µk and Σk are the mean vector and variance-covariance matrix
corresponding to class k.

In practice, the true values of µk and Σk are unknown, we estimate
these parameters as

µ̂k = sample mean of group k ,

Σ̂ = sample variance-covariance matrix of group k.

The rest of the process is exactly as before: we classify a new obser-
vation with data x to class k if the estimated posterior probability of
class k is highest, or equivalently, if p̂k f̂k(x) is highest.

The discriminant functions are9 9 This is a quadratic function of each of
the predictors in x.

δ̂k(x) = −1
2
(x− µ̂k)

TΣ̂−1
k (x− µ̂k)−

1
2
|Σ̂k|+ log(p̂k).

As before, an equivalent classification rule can be constructed using
δ̂k(x): assign x to class k is δ̂k(x) is largest among δ̂1(x), . . . , δ̂K(x).
This is the form of QDA for multiple predictors.

Let us consider the wines data again with all three classes, and
two predictors, Alcohol and Proline. Figure 10 shows the data for
the three classes, overlayed with bivariate normal density contours
for each class. The estimated mean vectors and variance-covariance
matrices for each class are shown below.

X <- cbind(wines$Alcohol, wines$Proline)

mu <- vector("list")

Sigma <- vector("list")

for(ii in 1:3){

mu[[ii]] <- colMeans(X[wines$Class == ii,])

Sigma[[ii]] <- cov(X[wines$Class == ii,])

}

mu

[[1]]

[1] 13.74475 1115.71186

##

[[2]]

[1] 12.27873 519.50704

##

[[3]]

[1] 13.15375 629.89583

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 classification 12

Sigma

[[1]]

[,1] [,2]

[1,] 0.2135598 36.91949

[2,] 36.9194944 49071.45003

##

[[2]]

[,1] [,2]

[1,] 0.2894055 3.651366

[2,] 3.6513662 24715.367807

##

[[3]]

[,1] [,2]

[1,] 0.2811559 -5.434707

[2,] -5.4347074 13247.329344

11 12 13 14

40
0

60
0

80
0

10
00

12
00

14
00

16
00

Alcohol

P
ro

lin
e

Class

1
2
3

Figure 10: Three class wines data over-
layed with normal density contours.

As before, for a given data point x, we can compute p̂k f̂k(x), and
the associated posterior probabilities.

For multivariate normal density

library(mnormt)

new data

newx <- data.frame(Alcohol = 13, Proline = 600)

p-hat

p <- table(wines$Class)/nrow(wines)

f-hat

f <- c()

for(ii in 1:3){

f[ii] <- dmnorm(newx, mean = mu[[ii]], varcov = Sigma[[ii]])

}

Posterior prob

post_prob <- p*f / sum(p*f)

round(post_prob, 3)

##

1 2 3

0.027 0.290 0.683

In general, we can use the qda()10 function in MASS package to 10 See ?qda for details.

build QDA models.

wine_qda <- qda(Class ~ Alcohol + Proline, data = wines)

wine_qda

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 classification 13

Call:

qda(Class ~ Alcohol + Proline, data = wines)

##

Prior probabilities of groups:

1 2 3

0.3314607 0.3988764 0.2696629

##

Group means:

Alcohol Proline

1 13.74475 1115.7119

2 12.27873 519.5070

3 13.15375 629.8958

prediction of new x

pred <- predict(wine_qda, newdata = newx)

pred

$class

[1] 3

Levels: 1 2 3

##

$posterior

1 2 3

1 0.027429 0.2898352 0.6827358

The decision boundaries for QDA are shown in Figure 11. Here the
boundaries are quadratic functions of Alcohol and Proline since the
discriminant functions are quadratic.

11 12 13 14

40
0

60
0

80
0

12
00

16
00

Alcohol

P
ro

lin
e

Figure 11: Decision boundary of QDA
when applied to wines data.

We can also estimate the test error rate of QDA when applied to
wine data using data splitting methods such as CV or holdout. We
can use caret to do so.

set.seed(1001)

caret_qda <- train(as.factor(Class) ~ Alcohol + Proline,

data = wines,

method = "qda",

trControl = trainControl(method = "CV",

number = 10))

caret_qda$results

parameter Accuracy Kappa AccuracySD KappaSD

1 none 0.8291667 0.7402777 0.1446417 0.2199071

Thus the estimated test error for QDA is 1−Accuracy = 0.171.
The qda() function also has the option to perform leave-one-out

cross-validation.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 classification 14

qda_cv <- qda(Class ~ Proline + Alcohol, data = wines,

CV = TRUE)

err <- confusionMatrix(reference = as.factor(wines$Class),

data = qda_cv$class)

err

Confusion Matrix and Statistics

##

Reference

Prediction 1 2 3

1 54 1 3

2 0 63 14

3 5 7 31

##

Overall Statistics

##

Accuracy : 0.8315

95% CI : (0.7682, 0.8833)

No Information Rate : 0.3989

P-Value [Acc > NIR] : <2e-16

##

Kappa : 0.7424

##

Mcnemar’s Test P-Value : 0.28

##

Statistics by Class:

##

Class: 1 Class: 2 Class: 3

Sensitivity 0.9153 0.8873 0.6458

Specificity 0.9664 0.8692 0.9077

Pos Pred Value 0.9310 0.8182 0.7209

Neg Pred Value 0.9583 0.9208 0.8741

Prevalence 0.3315 0.3989 0.2697

Detection Rate 0.3034 0.3539 0.1742

Detection Prevalence 0.3258 0.4326 0.2416

Balanced Accuracy 0.9408 0.8782 0.7768

Different clasification methods

In the discussion presented in the previous section, we made the
assumption that the predictors have multivariate normal density with
different mean vectors and different variance-covariance matrices
in each class. As a result, we developed QDA method. If we specify
the densities in a different way, or put other assumptions on the

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 classification 15

parameters, we will get different classification methods. For example,
we might assume that the multivariate normal distributions have the
same variance-covariance matrix, Σ, in each class. Then it can be shown
that the discriminant functions are linear in x. Specifically,

δ̂k(x) = xTΣ̂−1µ̂k −
1
2

µ̂T
k Σ̂−1µ̂k + log(p̂k)

The common variance-covariance matrix, Σ, can be estimated by
a “pooled” estimator.11 The corresponding classification method 11 For K classes,

Σ̂ =
(n1 − 1)S1 + . . . + (nK − 1)SK

n1 + . . . + nK − K
,

where S1, . . . , SK are sample covariance
matrices of X’s from class 1, . . . , K,
respectively.

is known as Linear Discriminant Analysis (LDA), and the decision
boundaries are linear.

In general, various classification methods specify or estimate the
densities in different ways, giving rise to different classification rules.
Some of these methods are shown below:

• Linear discriminant analysis (LDA):12 use Gaussian densities 12 lda function in MASS library

with different means but same covariance matrix for each class

• Quadratic discriminant analysis (QDA):13 use Gaussian densities 13 qda function in MASS library

with different means and different covariance matrices for each
class;

• Naive Bayes Classifier:14 uses estimated density assuming that the 14 NaiveBayes in klaR library

inputs are conditionally independent in each class;

• Regularized Discriminant Analysis:15 using regularized group 15 rda function in klaR library

covariance matrices that are robust against multicollinearity in the
data;

• Flexible discriminant analysis:16 regerssion based classifier, cap- 16 fda function in mda library

tures nonlinear features of the covariates;

• Mixture discriminant analysis:17 density of each class is modeled 17 mda function in mda library

using a mixture (weighted sum) of normal densities, can model
multimodal densities;

• Kernel Density Classification:18 densities are estimated nonpara- 18 kda function in ks library

metrically using kernel density estimation.

Figure 12 shows the decision boundaries of a few classification meth-
ods applied to wines data. Keep in mind that there are many more
discrimination analysis methods available in literature and in various
R packages.

LDA vs. QDA

Even though QDA can be considered more general method that LDA
(due to the restrictive assumption made in LDA that each class has

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 classification 16

Linear DA

Alcohol

P
ro

lin
e

11 12 13 14

40
0

80
0

12
00

16
00

Quadratic DA

Alcohol

P
ro

lin
e

11 12 13 14

40
0

80
0

12
00

16
00

Flexible DA

Alcohol

P
ro

lin
e

11 12 13 14

40
0

80
0

12
00

16
00

Naive Bayes

Alcohol

P
ro

lin
e

11 12 13 14

40
0

80
0

12
00

16
00

Figure 12: Classification boundaries for
four classifiers.

the same variance-covariance matrix), we might still prefer LDA in
some situations over QDA.

This is because QDA requires estimation of a larger number of
parameters than LDA. In our wine data example, suppose we use all
p = 13 predictors, with K = 3 classes. QDA estimates K variance-
covariance matrix with size p × p. Thus QDA estimates a total of
Kp(p + 1)/2 = 273 parameters. In comparison, LDA requires
estimation of only one common variance-covariance matrix. Since
LDA is a less flexible model, it may have more bias but less variance.
Thus sometimes LDA might have better prediction performance than
QDA.

However, we should keep in mind that if LDA’s assumption of
a common variance-covariance matrix of the K classes is badly vi-
olated, then LDA can suffer from high bias. Roughly speaking,
LDA tends to be a better choice than QDA if training sample size
is small and so reducing variance is crucial. In contrast, QDA is rec-
ommended if the training set is very large, so that the variance of the
classifier is not a major concern, or if the assumption of a common
covariance matrix for the K classes is clearly untenable.

−4 −2 0 2 4

−
4

−
3

−
2

−
1

0
1

2

−4 −2 0 2 4

−
4

−
3

−
2

−
1

0
1

2

X1X1

X
2

X
2

Figure 13: LDA vs QDA in two simu-
lated example. Left panel shows a data
set where each class has the same co-
variance matrix. The right panel shows
a data set with different covariance ma-
trices for each class. The Bayes (purple
dashed), LDA (black dotted), and QDA
(green solid) decision boundaries are
displayed. The shading indicates the
QDA decision rule

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 classification 17

Figure 13 shows examples of simulated data sets – figure taken
from Introduction to Statistical Learning. Each of the data sets contains
two variables X1 and X2 and two classes. The left panel shows the
data with cor(X1, X2) = 0.7 for both the classes. Thus the Bayes
decision boundary is linear in this case, and LDA performs better
than QDA, because QDA suffers from higher variance without a
corresponding decrease in bias. The right panel shows a data set
with cor(X1, X2) = 0.7 in one class and cor(X1, X2) = −0.7 in the
other. Here, the assumption os a common variance-covariance matrix
is not apppropriate and thus, LDA suffers from high bias but QDA
performs better.

A possible disadvantage of QDA/LDA is the assumption of mul-
tivariate normality of predictors in each class. When this assumotion
is unreasonable LDA/QDA can perfrom badly. However, assump-
tion of normality is more crucial for QDA than LDA since another
formulation of LDA19 does not require normality of the predictors. 19 Fisher, 1936

Naive Bayes classifier

Recall that LDA and QDA estimate the densities fk(·) for the K
classes using the multivariate normality assumption. The naive Bayes
classifier makes a single assumption: the joint density of Xi1, . . . , Xip

is the product of p individual density function,

fk(x) = fk1(x1)× . . .× fkp(xp).

In other words, within each class the p predictors are assumed to be
independent. This is a quite strong assumption – this will also imply
that there is no relation (linear or otherwise) between the predictors
within each class. In most situations, this assumption is not appro-
priate. However, a classifier can still be constructed basec on this
assumption, and it often gives good results (especially for smaller n).

With this assumption, we only need to form estimates of the
marginal density functions, f̂kj, j = 1, . . . , p, to obtain an estimate of
fk(x):

f̂k(x) = f̂k1(x1)× . . .× f̂kp(xp).

The rest of the procedure is the same as before: we compute the pos-
terior probabilites, or equivalently p̂k f̂k(x), and classify observations
accordingly.

We can form f̂kj by following any of the options below:

• If Xij is quantitative, we can assume Xij|Yi = k ∼ N(µkj, σ2
kj). Then

we only need to estimate µkj and σ2
kj.

20 20 This is equivalent to running QDA
with a diagonal variance-covariance
matrix.• Another option for quantitative predictors is to estimate the den-

sities nonparametric methods. Examples of such estimators are

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 classification 18

relative frequency histogram and kernel density estimator – a smoothed
version of histogram.

0.0

0.1

0.2

0.3

0.4

11 12 13 14 15
x

de
ns

ity

Figure 14: Relative frequancy histogram
and kernel density estimator (solid line)
of a sample.

• If Xij is qualitative, then we can simply take the proportion of
sample observations for each value of the predictor. In other
words, f̂kj is the estimated probability mass function of the j-th pre-
dictor:

f̂kj(xj) =
1

ntrain,k
∑

i
I(Xij = xj),

where ntrain,k is the size of the training set for the k-th class.

In R, we can use the NaiveBayes() function in the klaR library for
build a naive Bayes classifier.

library(klaR)

nb_wine <- NaiveBayes(as.factor(Class) ~ Alcohol + Proline,

data = wines,

usekernel = FALSE)

nb_kern <- NaiveBayes(as.factor(Class) ~ Alcohol + Proline,

data = wines,

usekernel = TRUE)

predict(nb_wine, newdata = data.frame(Alcohol = 13,

Proline = 600))

$class

[1] 3

Levels: 1 2 3

##

$posterior

1 2 3

[1,] 0.01007071 0.2884064 0.7015229

predict(nb_kern, newdata = data.frame(Alcohol = 13,

Proline = 600))

$class

[1] 3

Levels: 1 2 3

##

$posterior

1 2 3

[1,] 0.02208289 0.2097631 0.768154

Here we have assumed normal distribution for each predictor (usekernel
= FALSE) in the first fit, and use kernel density estimation in the sec-
ond fit (usekernel = TRUE). We can also use caret to evaluate test
error with “method = nb”.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 classification 19

Logistic Regression

One disadvantage of the classifiers discussed in the previous section
is that we need to estimate the densities of the multivariate random
variable X. The QDA method for example requires multivariate nor-
mality assumption which is not reasonable if components of X are
binary or categorical variables. The logistic regression model arises
from the desire to model the posterior probabilities of each of the
classes as functions of the data vector X without actually specifying
any distribution of X.

Usually, logistic regression models are used mostly as a tool for
data analysis and inference, where the main goal is to understand the
role of the predictors in explaining the outcome.

Model

For simplicity, we start with the case where we have two classes (1
and 2), and suppose for an item, we have covariate X = (Xi1, . . . , Xip)

T .
We can model posterior probabilities of the 2 classes via linear combi-
nations of X, such that the probabilities sum to one. We assume that
Y|X has a Bernoulli distribution, and model the posterior probabili-
ties as follows:

P(Y = 1|X) =
exp(β0 + Xi1β1 + . . . + Xipβp)

1 + exp(β0 + Xi1β1 + . . . + Xipβp)
;

P(Y = 2|X) = 1− P(Y = 1|X) = 1
1 + exp(β0 + Xi1β1 + . . . + Xipβp)

.

Here β = (β1, . . . , βp)T is the vector of coefficients of the covariates.
Another way to write the same model is using log-odds:21 21 Thus we are modeling the log-odds of

class 1 vs 2 as a linear function of Xi .

log
[

P(Y = 1|X)
P(Y = 2|X)

]
= β0 + Xi1β1 + . . . + Xipβp.

The expression P(Y=1|X)
P(Y=2|X) is called the odds of Y being 1 vs Y being 2.

The parameters β0, β1, . . . , βp quantifies the impact of the covariates
to the prediction of class labels.22 The group used in the denominator 22 We should note that the logistic

regression is not just a classifier; it is a
more general regression model.

(class 2 in our formulation above) is called the reference group. The
choice of reference group is arbitrary as the estimates of the posterior
probabilities are same.

Odds and log-odds

Let us understand the concepts of odds and log-odds in more detail.
Let us revisit wines data with K = 2 classes (1 and 2) and only one
covariate, X = ‘Alcohol‘. The odds are defined as

P(Y = 1|X)

P(Y = 2|X)
=

P(Y = 1|X)

1− P(Y = 1|X)
.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 classification 20

Thus, if P(Y = 1|X) = 0.1 leads to odds 0.1/0.9 = 1/9. In contrast
P(Y = 1|X) = 0.9 leads to odds 0.9/0.1 = 9. Thus greater odds relate
to higher posterior probability of class 1 (since class 2 is the reference
class).

In terms of log-odds, we have the model

log
[

P(Y = 1|X)

P(Y = 2|X)

]
= β0 + Xiβ1.

This model implies that with one unit increase in X (Alcohol), the
log-odds will change by β1 units. This change in log-odds does not
depend on the value of X, that is, whether X goes from 10 to 11, or
from 13 to 14, the change in log-odds stays the same, β1.23 Equiva- 23 This phenomenon is similar to linear

regression, where change in E(Y)
depends only on change in X, but not on
the actual starting value of X.

lently, due to one unit increase in X, the odds gets multiplied by eβ1 .
Specifically,

P(Y = 1|X = x + 1)
P(Y = 2|X = x + 1)

= eβ1
P(Y = 1|X = x)
P(Y = 2|X = x)

.

In terms of probabilities P(Y = 1|X), we note that the relation
between the posterior probabilities and odds (and X) is not linear:

P(Y = 1|X) =
odds

1 + odds
.

Thus one unit increase in X, or equivalently β1 unit change in odds,
does not result in a constant amount of change in P(Y = 1|X). The
actual change in P(Y = 1|X) depends on both the starting value of X
as well as the change in X. For example, with β0 = 40 and β1 = −3,
Figure 15 shows the plots of log-odds, odds, and P(Y = 1|X) over a
grid of values of X.

11 12 13 14 15 16

−
5

0
5

x

lo
g−

od
ds

11 12 13 14 15 16

0
20

0
40

0
60

0
80

0

x

od
ds

11 12 13 14 15 16

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

P
(Y

=
1|

x)

Figure 15: Plots of plots of log-odds,
odds, and P(Y = 1|X) over a grid of
values of X.

Classification

The model parameters can be estimated directly by maximum likeli-
hood, solution is obtained numerically by iteratively reweighted least

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 classification 21

squares.24 It follows that the posterior probabilities can be estimated 24 Essentially using a Newton–Raphson
algorithm; see for example Hastie,
Tibshirani and Friedman (2009), The
Elements of Statistical Learning.

by

P̂(Y = 1|X = x) =
exp(β̂0 + x1 β̂1 + . . . xp β̂p)

1 + exp(β̂0 + x1 β̂1 + . . . xp β̂p)
;

P̂(Y = 2|X = x) = 1− P̂(Y = 1|x),

where β̂ j’s are the estimates of the regression coefficients. We can
predict the class for a item with covariate x using the estimated prob-
ability that Y = 1 as follows:

The item is classified in group 1 if P̂(Y = 1|x) ≥ P̂(Y = 2|x), otherwise
in group 2.

Logistic regression can be performed using the glm() function in
base R. For demonstration purposes, let us consider only two classes
(1 and 2), and two covariates Alcohol and Proline. We create the
small wines data – the only change is that now we explicitly change
Class to a factor.

wine data for classes 1 and 2

wine_new <- wines[wines$Class == 1 | wines$Class == 2,]

wine_new$Class <- as.factor(wine_new$Class)

wine_new$Class <- relevel(wine_new$Class, ref = 2)

Note that we called the function relevel() with the argument "ref
= 2". This is done to set class 2 as the reference group. Now we can
perform logistic regression using the glm() function.

Logistic regression

wine_glm = glm(Class ~ Proline + Alcohol,

family = binomial(),

data = wine_new)

The first part Class ~ Proline + Alcohol is specifying Class as
response and Proline and Alcohol as covariates. The statement
family = binomial() is used to perform logistic regression.25 25 It will performs linear regression

using least squares without the “family
= binomial()” statement.

The estimated coefficients are as follows.

wine_coef <- wine_glm$coefficients

wine_coef

(Intercept) Proline Alcohol

-69.02763830 0.01369522 4.45310922

We can interpret β̂0 as the log-odds when both Proline and Al-
cohol levels are zero. Thus we have the corresponding odds of

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 classification 22

1.0511812 × 10−30. Keep in mind that in our dataset, zero values
for Alcohol and Proline are not present, so such an interpretation is
purely mechanical.

The estimated value of β1 can be interpreted as the amount log-
odds will change due to one unit increase in Proline while keeping
the Alcohol level fixed. Thus keeping Alcohol level fixed, one unit
increase in Proline level is associated with 0.0136952 unit change
in log-odds. Equivalently, odds will change by a multiplicative fac-
tor of 1.0137894 (in other words, increase by 1.379 percent). Similar
interpretation can be given for β̂2.

Suppose we have a new sample with Proline = 600 and Alcohol

= 13. So here x1 = 600 and x2 = 13. We can compute the estimated
posterior probabilities as

P̂(Y = 1|x = (600, 13)) =
e(−69.0276383+0.0136952∗600+4.4531092∗13)

1 + e(−69.0276383+0.0136952∗600+4.4531092∗13)
=

exp(−2.9200835)
1 + exp(−2.9200835)

= 0.0511696,

P̂(Y = 2|x = (600, 13)) = 1− P̂(Y = 1|x1 = 600, x2 = 13) = 0.9488304.

Thus the new sample will be classified to class 2.
In R, we can simply use the predict() function to compute the

probabilities shown above. By default, predict() gives the probabil-
ity of non-reference class, class 1 in our example.26 26 See ?predict.glm() for more details.

newx <- data.frame(Proline = 600,

Alcohol = 13)

predict(wine_glm,

newdata = newx,

type = "response")

1

0.05116964

We can also view the estimated posterior probabilities of the train-
ing set using predict() or using the $fitted.values component of
the fit. The probabilities for the non-reference group is computed by
default. We have also included the prediction of the whole dataset.27 27 Just as before, we relevel the factors

to set “2” as reference to make the
predictions comparable to the original
classes.

Figure 16 shows the posterior probabilities along with the true class
labels.

Training set estimation of P(Y = 1)

post.prob.1 = wine_glm$fitted

Training set estimation of P(Y = 2)

post.prob.2 = 1 - post.prob.1

Predicted groups

Y.hat = as.factor(ifelse(post.prob.1>post.prob.2, 1, 2))

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 classification 23

Y.hat <- relevel(Y.hat, ref = 2)

df <- data.frame("Class_1" = post.prob.1,

"Class_2" = post.prob.2,

"Predicted" = Y.hat,

"Observed" = wine_new$Class)

head(df, 4)

Class_1 Class_2 Predicted Observed

1 0.9998671 1.329346e-04 1 1

2 0.9842244 1.577560e-02 1 1

3 0.9969940 3.006042e-03 1 1

4 0.9999998 2.424491e-07 1 1

As an example, for the first wine sample (1st row), P̂(Y = 1|x) =

99.987% and P̂(Y = 1|x) = 0.013%. Thus this particular sample
will be classified to group 1. Figure 17 shows the decision boundary
of the classifier, that is, all values of (Alcohol, Proline) that has the
same posterior probability of being in class 1 or 2, or equivalently,
odds of 1 and log-odds of 0. Formally, we have the boundary is given
by all the solutions of the linear equation (the estimated formula of
log-odds):

−69.0276383 + 0.0136952 ∗ Proline + 4.4531092 ∗ Alcohol = 0.
2

1

0.00 0.25 0.50 0.75 1.00

Estimated P(Y = 1 | X)

O
bs

er
ve

d

Predicted 2 1

Figure 16: Esrimated posterior probabil-
ities of class 1 along with the true class
labels.

500

1000

1500

11 12 13 14 15

Alcohol

P
ro

lin
e

Class 2 1

0.250.500.75
P(Y = 1 | X)

Figure 17: Decision boundary of a 2-
class logistic regression based classifier.

We can use the function errormatrix() in the klaR package to
obtain the training confusion matrix.28

28 Alternatively, we can also use the
function confusionMatrix() in the
caret package for a detailed output.

Confusion matrix

err <- klaR::errormatrix(true = wine_new$Class,

predicted = Y.hat,

relative = TRUE)

round(err, 3)

predicted

true 1 2 -SUM-

1 0.949 0.051 0.051

2 0.042 0.958 0.042

-SUM- 0.500 0.500 0.046

Ideally, we should use cross-validation, training-testing sets to esti-
mate the accuracy, as we have learned before.

Hypothesis testing and confidence intervals

We can get a summary of the fit as follows.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 classification 24

testing each beta coefficient

summary(wine_glm)

##

Call:

glm(formula = Class ~ Proline + Alcohol, family = binomial(),

data = wine_new)

##

Deviance Residuals:

Min 1Q Median 3Q Max

-2.19220 -0.03196 -0.00558 0.02786 1.57716

##

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -69.027638 22.757675 -3.033 0.00242 **
Proline 0.013695 0.004362 3.140 0.00169 **
Alcohol 4.453109 1.592916 2.796 0.00518 **

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

(Dispersion parameter for binomial family taken to be 1)

##

Null deviance: 179.11 on 129 degrees of freedom

Residual deviance: 19.72 on 127 degrees of freedom

AIC: 25.72

##

Number of Fisher Scoring iterations: 9

The summary of the fit produces z-tests for coefficient of each co-
variate29; it seems both alcohol and proline are associated with the 29 This is actually an approximate (large

sample) test.group labels. Formally, the test statistic is essentially same as in linear
regression: suppose we want to test whether Alcohol (the second
predictor with coefficient β2) has any association with Y. Thus we
test for H0 : β2 = 0 vs. H1 : β2 6= 0. The test statistic is

z =
β̂2 − 0

ŜE(β̂2)
.

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

x

N
(0

,1
)

P
D

F

Figure 18: Two-tailed p-value for a
z-test.

Using large sample theory it can be shown that z approximately
follows a N(0, 1) distribution. Thus we reject H0 for large positive or
large negative values of z. Equivalently, the p-value can be computed
as

p− value = 2 ∗ P(Z > |z|),

where Z denotes N(0, 1) random variable. Figure 18 shows the p-
value of a two-sided z-test.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 classification 25

We can produce large sample 100(1− α)% confidence intervals for
β j as

[β̂ j ± z1−α/2SE(β̂ j)],

where z1−α/2 is the (1− α/2) quantile of the N(0, 1) distribution. For
example, a 95% confidence intervals for β1 is

[0.0136952± 1.96 ∗ 0.004362] = [0.0051456, 0.0222448].

We can interpret this intervals as follows: with every unit increase in
level of X1 (Proline in our example), we can expect an increase in log-
odds by an amount of 0.0051456 to 0.0222448. Equivalently, every unit
increase in level of X1, odds will be changed by a factor of 1.0051589

to 1.0224941 (in other words, increase in odds will be between 0.516

percent and 2.249 percent.)

Logistic regression with multiple classes

We can extend logistic regression presented for two classes to the
case of multiple classes; the regression method is called Multinomial
Logistic Regression. Suppose we have K classes, and we take the K-th
class as the reference. The log-odds of classes vs the reference class K
are modeled as follows:

log
[

P(Y = 1|Xi)

P(Y = K|Xi)

]
= β10 + Xi1β11 + . . . + Xipβ1p.

log
[

P(Y = 2|Xi)

P(Y = K|Xi)

]
= β20 + Xi1β21 + . . . + Xipβ2p.

...

log
[

P(Y = K− 1|Xi)

P(Y = K|Xi)

]
= βK−1,0 + Xi1βK−1,1 + . . . + XipβK−1,p.

Some algebra shows that the corresponding posterior probabilities
are as follows:

P(Y = k|Xi) =
exp(βk0 + Xi1βk1 + . . . + Xipβkp)

1 + ∑K−1
`=1 exp(β`0 + Xi1β`1 + . . . + Xipβ`p)

, k = 1, 2, . . . , K− 1,

P(Y = K|Xi) =
1

1 + ∑K−1
`=1 exp(β`0 + Xi1β`1 + . . . + Xipβ`p)

.

We can similarly build a classification rule as follows.

An item with covariate x is predicted to be in class k if the estimated
probability P̂(Y = k|x) is larger than the other posterior probabilities.

We can use the multinom() function in the nnet library to perform
multinomial logistic regression. Let us consider the wine data with
all the three classes.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 classification 26

library(nnet)

Convert Class in wines data to a fcator

and relevel to make 3 as reference

wines$Class <- as.factor(wines$Class)

wines$Class <- relevel(wines$Class, ref=3)

multinomial logistic regression

multilogit <- multinom(Class ~ Proline + Alcohol,

data = wines,

maxit = 200, trace=FALSE)

summary

summary(multilogit)

Call:

multinom(formula = Class ~ Proline + Alcohol, data = wines, maxit = 200,

trace = FALSE)

##

Coefficients:

(Intercept) Proline Alcohol

1 -45.59355 0.017412051 2.348672

2 39.00287 -0.004735415 -2.824180

##

Std. Errors:

(Intercept) Proline Alcohol

1 0.012260974 0.003256728 0.19427257

2 0.006280407 0.001748203 0.08287512

##

Residual Deviance: 135.2578

AIC: 147.2578

The option “trace = FALSE” in multinom() function suppresses the
printing of convergence steps. The option “maxit = 200” sets the
upper bound of the number of iterations to be performed to find the
solutions.

The estimated posterior probabilities are as follows.

estimated posterior probabilities

probs <- multilogit$fitted.values

head(probs)

3 1 2

1 1.705991e-03 0.9982906 3.365146e-06

2 2.430299e-02 0.9747533 9.437503e-04

3 2.603414e-03 0.9973369 5.972627e-05

4 8.947561e-07 0.9999991 1.665497e-10

5 7.479590e-01 0.1367403 1.153007e-01

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 classification 27

6 2.248876e-06 0.9999978 7.798500e-10

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Probability of group membership

Estimated probability of Y=2

E
st

im
at

ed
 p

ro
ba

bi
lit

y
of

 Y
=

3

True Classes

1
2
3 (ref)

Figure 19: Estimated posterior probaili-
ties for the wine data using multinomial
logistic regression.

Each row shows the estimated probability of group membership for
the corresponding wine sample. For example, the first wine sample
(first row), has a 99.82% probability of being in group 1. We can also
visualize the posterior probabilities as shown in Figure 19.

We can also hypothesis testing for each βkj using the standard
errors reported in the summary output.

Extract the coefficients and se

mlogit_sum <- summary(multilogit)

coef <- mlogit_sum$coefficients

se <- mlogit_sum$standard.errors

z-statistics

z <- coef/se

z

(Intercept) Proline Alcohol

1 -3718.591 5.346487 12.08957

2 6210.246 -2.708733 -34.07754

p-value

pv <- 2*pnorm(abs(z), lower.tail = FALSE)

pv

(Intercept) Proline Alcohol

1 0 8.967795e-08 1.199076e-33

2 0 6.754064e-03 1.587078e-254

We see for both classes 1 and 2, the two predictor variables are signif-
icant at any reasonable test level.

Softmax coding

In various areas in machine learning (including deep learning) an
alternative formulation of logistic regression is often used, called
softmax coding. Instead of setting a class as reference class, and mod-
eling the other classes against the reference class, in softmax, we treat
each class symmetrically. Specifically, we posit the model

P(Y = k|Xi) =
exp(βk0 + Xi1βk1 + . . . + Xipβkp)

∑K
`=1 exp(β`0 + Xi1β`1 + . . . + Xipβ`p)

, k = 1, 2, . . . , K.

Thus, rather than estimating coefficients for K− 1 classes, we actually
estimate coefficients for all K classes.

It can be shown that the softmax coding is equivalent to the refer-
ence class based coding described before, in the sense that the fitted

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 classification 28

values, log odds between any pair of classes, and other key model
outputs will remain the same, regardless of coding.

Issues to consider

There are some situations where logistic regression might not per-
form well. One such situation is complete (or quasi-complete) separation
of the data.

This situation happens when the outcome variable separates a pre-
dictor completely. This leads to perfect prediction of the outcome by
the predictor. Consider the following data set with binary response Y
and two predictors X1 and X2. Figure 20 shows relationship between
Y and the two predictors. In such a case, logistic regression may pro-
duce unreasonable over-inflated estimates of regression coefficients.

−2

0

2

−2 0 2

x1

x2

y
1
2

Figure 20: Simulated data set. The
response separates X1 completely, but
not X2.

glm(y ~ x1 + x2, family = binomial())

Warning: glm.fit: algorithm did not converge

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

##

Call: glm(formula = y ~ x1 + x2, family = binomial())

##

Coefficients:

(Intercept) x1 x2

6.801 -851.898 -5.579

##

Degrees of Freedom: 199 Total (i.e. Null); 197 Residual

Null Deviance: 277.2

Residual Deviance: 4.285e-07 AIC: 6

In general, if there is a linear combination Z = aX1 + bX2 that
is completely separated by Y, logistic regression will fail to produce
reasonable results. Figure 21 shows one such example where the data
is completely separated by the line X1 + X2 = 0.

−2

0

2

−2 0 2

x1

x2

y
1
2

Figure 21: Simulated data set. The
response separates the data completely
– the boundary (dashed line) is X1 +
X2 = 0. Negative values of X1 + X2
corresponds to Y = 2, and positive
values corresponds to Y = 1.

glm(y ~ x1 + x2, family = binomial())

Warning: glm.fit: algorithm did not converge

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

##

Call: glm(formula = y ~ x1 + x2, family = binomial())

##

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 classification 29

Coefficients:

(Intercept) x1 x2

14.54 -1578.34 -1550.26

##

Degrees of Freedom: 199 Total (i.e. Null); 197 Residual

Null Deviance: 277.1

Residual Deviance: 2.051e-06 AIC: 6

Although the examples above shows complete separation using
continuous predictors, it is more like to happen when using categor-
ical predictors coded by dummy variables. Small sample size might
contribute to this problem as well. In such situations, applying other
classification methods (e.g., LDA) is preferred.

Since logistic regression deals with binary outcome, often it re-
quires more sample size that linear regression. Multinomial logit
regression requires even more sample size than binary logistic regres-
sion due to the fact that it estimates parameters for multiple classes.

In presence of categorical predictor, it might happen that there
are some combination of predictor and response values that are not
present in the data. In such a case, logistic fit may become unstable,
or might even fail to converge.

As a practical example of perfect separability, consider the wines
data with two classes, “1” and “2”, but with all 13 predictors. Note
that glm did not converge, and produces extremely inflated standard
errors.

wines <- read.table("data/Wines.txt", header = TRUE)

wines_all <- glm(as.factor(Class) ~ .,

data = wines[1:130,],

family = binomial())

Warning: glm.fit: algorithm did not converge

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

summary(wines_all)

##

Call:

glm(formula = as.factor(Class) ~ ., family = binomial(), data = wines[1:130,

])

##

Deviance Residuals:

Min 1Q Median 3Q Max

-2.553e-05 -2.110e-08 2.110e-08 2.110e-08 2.919e-05

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 classification 30

##

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.358e+02 1.067e+06 0.000 1

Alcohol -1.975e+01 9.891e+04 0.000 1

Malic -9.063e+00 5.437e+04 0.000 1

Ash -5.743e+01 1.170e+05 0.000 1

Alcal 7.387e+00 1.396e+04 0.001 1

Mg -3.931e-01 2.462e+03 0.000 1

Phenol 4.134e+00 2.037e+05 0.000 1

Flav -1.271e+01 8.464e+04 0.000 1

Nonf 1.805e+01 7.368e+05 0.000 1

Proan 1.448e+01 7.417e+04 0.000 1

Color 3.624e+00 4.266e+04 0.000 1

Hue 1.966e+01 5.242e+05 0.000 1

Abs -3.509e+01 9.601e+04 0.000 1

Proline -8.307e-02 2.426e+02 0.000 1

##

(Dispersion parameter for binomial family taken to be 1)

##

Null deviance: 1.7911e+02 on 129 degrees of freedom

Residual deviance: 4.4477e-09 on 116 degrees of freedom

AIC: 28

##

Number of Fisher Scoring iterations: 25

Comparison of a few classifiers

Chapter 4.5 of the textbook Introduction to Statistical Learning pro-
vides a nice comparison of the different classifiers we learned in this
chapter. I recommend you read the chapter to get more insight. We
will provide only a brief overview of the discussion presented in the
book.

Analytically, we can compare the form of log-odds of LDA, QDA,
naive Bayes and logistic regression. We can show that:

• LDA and logistic regression models the log-odds as a linear com-
bination of the predictors.

• QDA models the log-odds as a quadratic function of the predic-
tors.

• Naive Bayes classifier model the log-odds as a sum of non-linear
functions of the predictors.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 classification 31

We can observe that LDA is a special case of QDA since LDA as-
sumes the covariance matrix for each class is the same. On the other
hand, any classifier with a linear decision boundary is a special case
of naive Bayes. However, neither QDA nor naive Bayes is a special
case of the other. Between LDA and logistic regression, we expect
LDA to perform better if the assumptions for LDA are satisfied.

The textbook Introduction to Statistical Learning also provides nu-
merical comparison between various classifiers discussed so far.
Figure 22 shows test error rates under different scenarios – see the
textbook for details for each scenarios.

K
N

N
−

1

K
N

N
−

C
V

LD
A

Lo
gi

st
ic

N
B

ay
es

Q
D

A

SCENARIO 1

0.
25

0.
30

0.
35

0.
40

0.
45

K
N

N
−

1

K
N

N
−

C
V

LD
A

Lo
gi

st
ic

N
B

ay
es

Q
D

A

SCENARIO 2

0.
15

0.
20

0.
25

0.
30

K
N

N
−

1

K
N

N
−

C
V

LD
A

Lo
gi

st
ic

N
B

ay
es

Q
D

A

SCENARIO 3

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

K
N

N
−

1

K
N

N
−

C
V

LD
A

Lo
gi

st
ic

N
B

ay
es

Q
D

A

SCENARIO 4

0.
30

0.
35

0.
40

K
N

N
−

1

K
N

N
−

C
V

LD
A

Lo
gi

st
ic

N
B

ay
es

Q
D

A

SCENARIO 5

0.
18

0.
20

0.
22

0.
24

0.
26

0.
28

0.
30

0.
32

K
N

N
−

1

K
N

N
−

C
V

LD
A

Lo
gi

st
ic

N
B

ay
es

Q
D

A

SCENARIO 6

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

Figure 22: Test error rates for a few
classifiers in linear (top row) and
nonlinear (bottom row) scenarios
described in Introduction to Statistical
Learning, section 4.5.

In general, no single classifier performs best in every scenario.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 classification 32

Their test performance depends on the underlying structure (dis-
tribution, variance-covariance patterns) of the the data. If it often a
good idea to build several classifiers, and evaluate them using their
test error rate.

High-Dimensional Problems

When the number of predictors p is larger than (or close to) the sam-
ple size n, the methods described in this section suffer from numeri-
cal instability or simply can not be applied to the data.30 We can ap- 30 Recall same issues in Linear Regres-

sion.ply similar strategies discussed for linear regression here as well: reg-
ularization/shrinkage and dimension reduction methods. Some clas-
sifier such as naive Bayes are more appropriate in hig-dimensional
data than others.

For example, we can extend LDA for high-dimensional data by
assuming a diagonal covariance matrix (i.e., assuming features are
independent in each class). This method is called Diagonal Linear Dis-
criminant Analysis.31 Similar approach can be taken for QDA as well 31 A special case of Naive Bayes classi-

fier, see section 18 of Element of Statis-
tical Learning by Hastie et al. if you are
interested in more details.

resulting in Diagonal Quadratic Discriminant Analysis.32 Regularized

32 Dudoit, S., Fridlyand, J., and Speed,
T. P. (2002). “Comparison of Discrimi-
nation Methods for the Classification of
Tumors Using Gene Expression Data,”
Journal of the American Statistical
Association, 97, 457, 77-87.

versions of LDA such as nearest shrunken centroids (NSC), Regularized
discriminant analysis (RDA), and many other methods are also avail-
able in literature. R packages such as sparsediscrim, HDclassif,
HiDimDA among others have various classifiers for high-dimensional
data.

Like linear regression, we can develop ridge, lasso and elastic
net methods for logistic regression as well. All these methods are
available in glmnet() package. As before, these methods shrink the
regression coefficients towards zero, can be used in high-dimensional
setting. We show the lasso based logistic regression fit of the two-
class wines data (class 1 and 2) with the penalty parameter λ chosen
by CV below.33 33 glmnet() automatically scales the

predictors before estimating the regres-
sion coefficients, and then outputs the
coefficients in the original scale.library(glmnet)

set.seed(1102)

CV to choose lambda

logit_cv <- cv.glmnet(x = as.matrix(wine_new[,-1]),

y = wine_new$Class,

family = binomial(),

alpha = 1)

−8 −6 −4 −2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Log(λ)

G
LM

 D
ev

ia
nc

e

9 9 9 9 9 9 9 9 8 7 7 7 7 6 4 2 2 2

Figure 23: CV results for logistic regres-
sion of wines data with lasso penalty.

Final fit with lambda chosen by 1-SE rule

wine_lasso <- glmnet(x = as.matrix(wine_new[,-1]),

y = wine_new$Class,

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 classification 33

family = binomial(),

alpha = 1,

lambda = logit_cv$lambda.1se)

Estimated coefs

coef(wine_lasso)

14 x 1 sparse Matrix of class "dgCMatrix"

s0

(Intercept) -55.12013884

Alcohol 2.71260772

Malic 0.90390641

Ash 5.23709395

Alcal -0.55394362

Mg .

Phenol .

Flav 0.27146489

Nonf .

Proan .

Color 0.44396146

Hue -0.55507251

Abs 2.12543584

Proline 0.01019674

Dimension reduction method like PCA can still be applied to the
predictors before building classifiers. PCA often is useful in pro-
viding better visualization of the data. For example, the full wines
data has 13 predictors, which are hard to visualize in a plot. Let us
perform PCA and plot the first few PCs along with class labels.

wine data PCA

wine_pca <- prcomp(wines[, -1], scale. = TRUE)

wine_score <- wine_pca$x

−4 −2 0 2 4

−
4

−
2

0
2

PC1

P
C

2

app. error rate: 0.028

Class

1
2
3

Figure 24: LDA based classification of
wines data using first two PCs.

Figure 24 shows results from LDA using only the first two PCs as
predictors. We can see that PC1 and PC2 almost completely separate
the three classes. Thus we have reduced dimension from 13 to two.
Keep in mid that PCA is an unsupervised technique, and such a
nice classification performance may not always happen. Also, even
though PC1 and PC2 lead to excellent classification, together they
only explain 55% variation of the data. The opposite can be true as
well – the first two PCs of some data might explain a large amount of
variation but fail to produce good classification results.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 classification 34

summary(wine_pca)

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7

Standard deviation 2.169 1.5802 1.2025 0.9587 0.92369 0.80103 0.74232

Proportion of Variance 0.362 0.1921 0.1112 0.0707 0.06563 0.04936 0.04239

Cumulative Proportion 0.362 0.5541 0.6653 0.7360 0.80163 0.85098 0.89337

PC8 PC9 PC10 PC11 PC12 PC13

Standard deviation 0.59039 0.53746 0.5008 0.47517 0.41079 0.32151

Proportion of Variance 0.02681 0.02222 0.0193 0.01737 0.01298 0.00795

Cumulative Proportion 0.92018 0.94240 0.9617 0.97907 0.99205 1.00000

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

	Introduction
	Generative Models
	Logistic Regression
	Comparison of a few classifiers
	High-Dimensional Problems

