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Introduction

Linear regression is a simple supervised learning tool for modeling a
quantitative response. It is much simpler compared to other modern
techniques; however, such models are still very useful in developing
new methods. In fact, many flexible nonparametric models can be
though of generalizations of linear regression model. Practically, in
real data, often we see relationships that locally linear. In other cases,
even if the original relationship is not linear, one may transform the
response and predictors (e.g., using a log-transform) to get linearity.

A linear regression model has the form

Yi = β0 + Xi1β1 + Xi2β2 + . . . + Xipβp + εi,

where Yi is a quantitative response, Xi1, . . . , Xip are predictor vari-
ables, and εi is unobserved random error. Here β0 is th e intercept, the
coefficient β j, j = 1, . . . , p are coefficients associated with predictor
Xij. The value of β j indicate the strength, and direction, of the linear
relationship between Xij and Yi.1 Typically, we assume that the er- 1 A special case is the simple linear

regression model, which has only one
predictor X.

rors have mean zero, that is E(εi) = 0. Thus we can write the mean
response as

E(Yi|Xi1, . . . , Xip) = β0 + Xi1β1 + Xi2β2 + . . . + Xipβp.

Such a representation also gives us an interpretation of the β param-
eters: β j is the rate of change in the mean response due to one unit
increase in the j-th predictor, while keeping the other variable fixed.
We call such regression models as linear models.

Linear models

We call the model described above a linear model because
E(Y|X) is linear in parameters, that is, linear in β.

An implication of the definition above is that we can have non-
linear terms of X, but the model would be still a linear model. For
example, the so-called polynomial regression,

E(Yi|Xi) = β0 + Xiβ1 + . . . + Xd
i βd,

fractional polynomial regression2 2 Royston P, Sauerbrei W (2004) A new
approach to modelling interactions
between treatment and continuous
covariates in clinical trials by using
fractional polynomials. Stat Med
23:2509–2525

E(Yi|Xi) = β0 + Xr1
i β1 + . . . + Xrd

i βd,

where the powers r1, . . . , rd are chosen from {−2,−1,−0.5, 0.5, 1, 2, 3},
and models with interaction such as

E(Yi|Xi1, Xi2) = β0 + Xi1β1 + Xi2β2 + Xi1Xi2β3,
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are all linear models.3 Thus linear models do not just capture linear 3 In contrast, a model such as E(Y|X) =
eβ0+Xβ1 is a nonlinear regression model.effects of X, they can capture nonlinear functions of X as well. Figure

1 shows a few examples functions that can be captured by appropri-
ate linear models.

A common estimation procedure for the regression coefficients
is the least squares technique, which we will learn about in the next
section. We denote the estimated coefficients as β̂ j, and the in-sample
predictions are

Ŷi = β̂0 + Xi1 β̂1 + Xi2 β̂2 + . . . + Xip β̂p.

In general, for new data points Xnew,1, . . . , Xnew,p the corresponding
prediction is

Ŷnew = β̂0 + Xnew,1 β̂1 + Xnew,2 β̂2 + . . . + Xnew,p β̂p.

The difference between the observed and predicted values are called
residuals,

ei = Yi − Ŷi.

We define the residual sum of squares, also known as sum-of-squared
errors (SSE) as

RSS = ∑
i

e2
i = ∑

i
(Yi − Ŷi)

2.

We see that MSE is simply RSS divided by the sample size. Thus we
can compute test/training MSE form the corresponding RSS. Let us
now move onto estimation procedure for linear models.
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Figure 1: Examples of functions that
can be captured by appropriate linear
models.

Least Squares Estimation

Recall that our linear regression model has the form:

Yi = β0 + Xi1β1 + Xi2β2 + . . . + Xipβp + εi.

The ordinary least squares (OLS) procedure estimates β j, j = 0, . . . , p by
minimizing the sum-of-squares

n

∑
i=1

(Yi − β0 − Xi1β1 − . . .− Xipβp)
2,

with respect to β j’s. The resulting estimates are called the ordinary
least squares estimates of β j.

In the special case with only one predictor, that is, the simple linear
regression model

Yi = β0 + Xiβ1 + εi,

the OLS estimators of the regression coefficients are

β̂1 =
∑n

i=1(Xi − X̄)(Yi − Ȳ)
∑n

i=1(Xi − X̄)2 , and β̂0 = Ȳ− X̄β̂1.
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Figure 2 shows the geometry of the OLS procedure when there is
only one predictor. In Figure 2, the response is Sales and the predic-
tor is TV.
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Figure 2: Geometry of the OLS proce-
dure. Each grey line segment represents
a residual. The best values of regression
coefficients are found by minimizing
sum of sqaures of these residuals. Fig-
ure taken from Introdction to Statistical
Learning.

For the general regression model with p predictors, writing closed
form expression is easier in matrix from. We can convert the original
regression model in matrix form as

Y = Xβ + ε,

where Y = (Y1, . . . , Yn)T is the column vector of responses, X is
n× (p + 1) matrix, β = (β0, β1, . . . , βp)T is the column vector of re-
gression coefficients, and ε = (ε1, . . . , βn)T is the column vector of
errors. We call X the model matrix. The first column of X has all ele-
ments equal to 1 (corresponding to the intercept). For the remaining
part of X, each row corresponds to an unit/individual and each col-
umn corresponds to a predictor. Thus for the special case of simple
linear regression with one predictor X, the model matrix is of size
n× 2,

X =


1 X1
...

...
1 Xn

 .

In general, we have

X =


1 X11 . . . X1p
...

... . . .
...

1 Xn1 . . . Xnp

 .

X1

X2

Y

Figure 3: Geometry of the OLS pro-
cedure with two preditors with no
interaction. Each grey line segment
represents a residual. Figure taken from
Introdction to Statistical Learning.

With the setup above, there is a unique minimizer of the sum-of-
squares – the estimator of the regression parameter vector is4

4 Here we denote the inverse of a square
matrix A by A−1, when it exists.

β̂ = (XTX)−1XTY.

Figure 3 shows the geometry of the OLS procedure when there are
predictors, E(Y|Xi1, Xi2) = β0 + Xi1β1 + Xi2β2.

The estimator above depends on the term (XTX)−1, that is, the
inverse of (XTX). Such an inverse exists only if X has full column-rank.
Equivalently, X must have the following two properties:

(C1) The sample size n is larger than the number of regression
coefficients in the model, p + 1.

(C2) None of the columns of X can be written as a weighted sum
(called a linear combination) of the remaining columns.

If X violates either of these conditions, then a unique least squares
estimator does not exist. If X violates (C2) but not (C1), then we can
replace (XTX)−1 by a generalized inverse5, but there will be many esti- 5 Generalized inverse of A is a matrix

G such that AGA = A. Although there
are other definitions used by various
authors.Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu
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mators that minimize the sum-of-squares. Interpreting them will be
difficult in general. In practice, even if the predictors are not perfectly
correlated, their correlation can be high enough to cause numerical
instability. This issue is known as multicollinearity among predictors.
We can avoid this issue by removing the collinear predictors from the
model.

If X violates (C1) then (C2) is automatically violated.6 In that case, 6 A matrix can not have full column
rank if it has more rows than columns.one can take a few steps described below.

• We can remove highly correlated predictors to reduce the overall num-
ber of predictors.

• Use variance inflation factor (VIF) – we will learn it shortly – to diag-
nose multicollinearity. VIF tells us how correlated each predictor is
with the remaining predictors.

• Apply dimension reduction techniques, such as principal component
analysis (PCA) or partial least squares (PLS).

• Apply shrinkage methods, such as LASSO regression, to reduce
small regression coefficients to zero.

We will learn the techniques mentioned above in future.
A drawback of least squares is that it is susceptible to influential

points, the points that have unduly high impact on the regression
process, such as parameter estimates, predicted response etc.

Influential points

Outlier: A point for which the response (Y) is far from the
value predicted by the model.

High leverage point: A point with unusual value of predictor
(X), i.e., large/small values compared to the rest of the data.

Figure 4 shows an example of an outlier and its impact of the regres-
sion fit.
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Figure 4: Example of an outlier (red
point). Shown are two regression lines:
before (red dashed) and after (blue
solid) removing the outlier.

We could simply remove the outlier from the data set, and/or use
a different minimization criterion that are more robust to influential
points. For example, instead of minimizing the squared error criteria
∑i e2

i , one can use the least absolute deviation (LAD) criterion,7

7 Diminishes the effect of outliers by
taking absolute value rather than
square.

n

∑
i=1
|ei|,

or Huber function, which uses squared residuals when their values
are small, but uses absolute value for large residuals (above a certain
cutoff). In general, robust regression methods are often of interest if
data are prone to large outliers or have a heavy tailed distribution.
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Implementation in R

We can use the lm() function in base R to fit linear models. Let us
revisit the Boston data in the ISLR2 package. We start by fit a sim-
ple linear regression model with medv as response and lstat as
the predictor. The model matrix X for this regression should have
two columns: the first column with 1 as each element, and the sec-
ond column would contain lstat values. If needed, we can use the
model.matrix() function to create X manually.

model_mat <- model.matrix( ~ lstat, data = Boston)

head(model_mat)

## (Intercept) lstat

## 1 1 4.98

## 2 1 9.14

## 3 1 4.03

## 4 1 2.94

## 5 1 5.33

## 6 1 5.21

The first argument of model.matrix() is the formula “~ lstat”.
Note the left hand side of the formula is empty since X does not
depend on the response. The right hand side contains the regression
formula. Note that the intercept is automatically included8 – we do 8 If we need to remove the intercept, we

need to specify “~ -1 + lstat”not need to write "~ 1 + lstat.
We can use the lm() function in base R to fit a linear model. We

can use the formula interface directly if we want, as shown below.9 9 Use names(simple_ols) to see all
the components of the output. Of
special interest are: “coefficients”
(estimate β parameters), “residuals”,
and “fitted.values” (predicted response
of the training set).

simple_ols <- lm(medv ~ lstat,

data = Boston)

simple_ols$coefficients

## (Intercept) lstat

## 34.5538409 -0.9500494
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Figure 5: Least squares fit to the simple
linear regression model with ‘medv‘ as
response and ‘lstat‘ as the predictor.

Figure 5 shows the least squares fit to the Boston data. We can see
the estimate intercept, β̂0 ≈ 34.55, and the slope β̂1 ≈ −0.95. The
estimated slope the rate of change in E(Y|X) for each unit increase
in X. In other words, every 1 unit in crease in lstat (lower status of
the population in percent), the expected value of medv (median value
of owner-occupied homes) decreases by 0.95 units. Examining Figure
5, there is some evidence of nonlinear effect of lstat for smaller and
larger values.

To fit multiple linear regression with more than one predictors, we
simply need to include the predictors in the formula. For example,
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we can fit a quadratic term of lstat as well.10 Figure 6 shows the 10 Here the term I(lstatˆ2) tells the
formula that the square of lstat should
be computed as is.

fitted regression line.

quad_ols <- lm(medv ~ lstat + I(lstatˆ2),

data = Boston)

quad_ols$coefficients

## (Intercept) lstat I(lstat^2)

## 42.86200733 -2.33282110 0.04354689
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Figure 6: Least squares fit to the simple
linear regression model with ‘medv‘ as
response and ‘lstat‘ as the predictor.

We can fit interaction terms using the X1*X2 notation. Thus the
fomula Y ~ X1*X2 will include main effects of X1 and X2, and the two-
way interaction effect X1X2 in the model. For example, we can fit a
model with lstat, age and their interaction as follows.11

11 Alternatively, we can explicitly
specify the interaction term in the
formula: “lstat + age + lstat:age”

int_ols <- lm(medv ~ lstat * age,

data = Boston)

int_ols$coefficients

## (Intercept) lstat age lstat:age

## 36.0885359346 -1.3921168406 -0.0007208595 0.0041559518

We usually retain all lower-order terms corresponding to an interaction
in the model, that is, if the model has the term X1X2, we also retain
terms X1 and X2. In presence of an interaction term, the effect of a
predictor on response is not constant. The expected change in the
response due to one unit increase in the predictor also depends on
the other predictor involved in the interaction. Specifically, consider
the model

Y = β0 + X1β1 + X2β2 + X1X2β3 + ε.
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Figure 7: Contour plots of fitted surface
in regression without (top) and with
(bottom) a two-way interaction term.

Then for a fixed value of X2 = x2, one unit increase in X1 corre-
sponds to β1 + x2β3 amount change in Y, not just β1. Thus the fitted
surface will have some curvature. Figure 7 shows fitted surface with
and without a two-way interaction effect. In the example above, one
unit increase in lstat corresponds to a change of −1.392 + 0.004 ∗ age
in medv on average. On the other hand, one unit increase in age cor-
responds to a change of −0.001 + 0.004 ∗ lstat in medv on average. We
can interpret the estimated interaction term as the effect of age on the
impact of lstat on medv (and vise-versa).

Standard errors

The estimated coefficients, and thus the fitted regression line are ran-
dom quantities since they change from sample to sample. Thus we
need a way to quantify the variability associated with the estimates.
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To this end, we require additional assumptions on the error terms εi.
For simplicity, we will use the following set of assumptions:12 12 There are ways to relax these assump-

tions. For example, if we have large
sample size, we might relax the normal-
ity assumption under certain conditions
on X.

• The errors εi are independently and identically distributed as
N(0, σ2).

• Errors are independent of the covariates Xi

The assumptions above imply that Yi|Xi ∼ N(β0 + Xiβ1, σ2).
One way to quantify variability associated with estimation of β’s is

to compute the standard error (SE) of the estimates, defined as,

SE(β̂ j) =
√

var(β̂ j).

For a general multiple linear regression model with model matrix
X, the standard error of β j can be computed as13 13 Here j = 0 corresponds to the

intercept β0.

SE(β̂ j) = σ
√
(j + 1)− th diagonal element of(XTX)−1, j = 0, 1, . . . , p.

A special case is the simple linear regression, where the standard
errors, given fixed values of x1, . . . , xn are

SE(β̂0) =

√
σ2
[

1
n
+

x̄
∑n

i=1(xi − x̄)2

]
, SE(β̂1) =

√
σ2

∑n
i=1(xi − x̄)2 .

Examining the expression of standard errors of β̂0 and β̂1 shows that
SE will be smallest if the denominator ∑n

i=1(xi − x̄)2 is maximized.
Thus, SE is smallest if the predictor values, Xi’s, are more spread out
from their center.

Note that the standard error expressions depend on the error
variance σ2, which is an unknown quantity. We can estimate σ2, and
σ, using the residual sum of squares.

Residual standard error (RSE)

We estimate

σ̂2 =
RSS

n− (p + 1)
, σ̂ =

√
RSS

n− (p + 1)
,

where p + 1 is the number of columns in the model matrix X.
The resulting estimator of σ is known as residual standard error
(RSE).

We then plug-in σ̂2 in place of σ2 in the expressions of standard
errors, to obtain estimated standard errors, ŜE(β̂ j). For simplicity of
presentation, we will still denote the estimated standard error by
SE(β̂ j).
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The denominator n− (p + 1) in the expression of σ̂2 merits some
discussion. We can view this number as “sample size - number of
β parameters in the mean function”. In simple linear regression we
have two parameters in mean function, and thus we have the term
n− 2. In general, with p predictors, the total number of parameters
in the mean function is p + 1 (since we need to include the intercept).
Thus we use n− (p + 1) as the denominator.

We can see the standard errors in R using the summary() function.

summary(simple_ols)

##

## Call:

## lm(formula = medv ~ lstat, data = Boston)

##

## Residuals:

## Min 1Q Median 3Q Max

## -15.168 -3.990 -1.318 2.034 24.500

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 34.55384 0.56263 61.41 <2e-16 ***
## lstat -0.95005 0.03873 -24.53 <2e-16 ***
## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 6.216 on 504 degrees of freedom

## Multiple R-squared: 0.5441, Adjusted R-squared: 0.5432

## F-statistic: 601.6 on 1 and 504 DF, p-value: < 2.2e-16

The first column of the output above are the estimates that we have
discussed before. The second column gives the standard errors of the
estimates.

Alternatively, we can directly use the following code:14 14 Here the vcov() function produces
the matrix σ2(XTX)−1.The function
diag() then extracts the diagonal
elements of the matrix, and then we
we take the square root by using the
sqrt() function.

se <- sqrt(diag(vcov(simple_ols)))

se

## (Intercept) lstat

## 0.56262735 0.03873342

The last part of the summary output above shows Residual

standard error: 6.216. Thus in this case σ̂ = 6.216. We can use
the sigma() function to directly obtain this value.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu
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sigma(simple_ols)

## [1] 6.21576

Inference

The standard errors, along with normality assumption on the errors,
further enable us to perform statistical inference on the coefficients:

• Construct confidence intervals of β̂ j: a set/range of values which
contain the “true” value of β j with high probability.15 This can be 15 Probability computed over repeated

sampling.investigated by a t-statistic based confidence interval.

• Perform hypothesis tests to determine whether the j-the predictor
has any linear association with Y, H0 : β j = 0 vs. H1 : β j 6= 0. This
can be investigated using a t-test.

• Perform hypothesis tests to determine whether the any of the
predictors has any linear association with Y, H0 : β1 = . . . = βp =

0 vs. H1 : at least on β j is non-zero. We can use F-test to answer
this question.

We discuss each of the items below.

Confidence interval

Without going into mathematical details, we can obtain a confidence
interval for β j using the standard errors.

Confidence interval for β j

A 100(1− α)% confidence interval for β j is

[β̂ j ± t1−α/2,n−(p+1)SE(β̂ j)],

where t1−α/2,n−(p+1) denotes the 1− α/2 quantile of a tn−(p+1)
distribution.

Again, the number n− (p + 1) is the same as we see in the estimator
σ̂2. This number is called the degrees of freedom of the t-distribution
used above. −4 −2 0 2 4
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Figure 8: t PDF and quantiles. The
shaded region has area p, and the x-axis
value corresponding to the solid vertical
line represents the (1-p)-quantile. In
this example, we have p = 0.05, and
the vertical line represents the upper
0.95-quantile.

In R, we can use the function confint() to obtain individual confi-
dence intervals for the regression coefficients.

## 95\% confidence intervals

ci <- confint(simple_ols, level = 0.95)

ci

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu
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## 2.5 % 97.5 %

## (Intercept) 33.448457 35.6592247

## lstat -1.026148 -0.8739505

We can interpret the intervals for intercept by saying that when
lstat = 0, on average medv is estimated to be between 33.45 and
35.66 with 95% confidence. We can interpret the interval for the slope
as follows: we estimate with 95% confidence that medv on average
decreases between 1.03 and 0.87 for 1 unit increase in lstat.16 16 Note that we are not stating that

probability of the true value of β1 falls
between −1.03 and −0.87 is 95%. This
is clearly a wring statement since the
probability is either 0 or 1.

t test

We can also perform hypothesis tests on the regression coeffieients. If
our main interest is in testing the association between Xj and Y, we
test for

H0 : β j = 0 vs. H0 : β j 6= 0.

Note that β j = 0 implies that Xj is not in the model, and thus not
associated with Y. We can use the t-statistic to perform the test:17 17 In general, to test H0 : β j = δ vs. H0 :

β1 6= δ, for any fixed value of δ, we use
the test statistic

t =
β̂ j − δ

SE(β̂ j)
.

t-test for H0 : β j = 0 vs. H0 : β j 6= 0

The t test statistic is

t =
β̂ j − 0

SE(β̂ j)
.

The test statistic measures how far away the estimated value of β1

is from zero compared to the variability of the estimate measured by
SE(β̂1). We expect the statistic t to have a tn−(p+1) distribution if H0

is true. Then we reject H0 is the observed value of t is very large or
very small compared to what we expect from a tn−(p+1) distribution.
Equivalently, we can compute the p-value of this test as

−4 −2 0 2 4
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Figure 9: Two-tailed p-value for a t-test.

p-value = P(tn−(p+1) > |t|) = 2[1− F(|t|)],
where F(|t|) is the CDF of the tn−(p+1) distribution evaluated at |t|.
We reject H0 if the p-value if smaller than α, where we set α to be a
small value (usually set to 5%). The quantity α is called the type I
error of the test (probability of rejecting H0 when it should not be
rejected).

In R, we can use the summary() function to obtain the test results.

summary(simple_ols)

##

## Call:

## lm(formula = medv ~ lstat, data = Boston)

##

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu
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## Residuals:

## Min 1Q Median 3Q Max

## -15.168 -3.990 -1.318 2.034 24.500

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 34.55384 0.56263 61.41 <2e-16 ***
## lstat -0.95005 0.03873 -24.53 <2e-16 ***
## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 6.216 on 504 degrees of freedom

## Multiple R-squared: 0.5441, Adjusted R-squared: 0.5432

## F-statistic: 601.6 on 1 and 504 DF, p-value: < 2.2e-16

We see that the p-value associated with β1 (coefficient of lstat) is
very small, and thus reject H0. We conclude that lstat has a linear
relationship with medv.

In general, a large p-value would indicate that, any linear asso-
ciation we see between X and Y is most likely by chance even if X
and Y are not actually related. A small p-value would indicate that
it is unlikely to observe a large association between X and Y due to
chance in absence of a real relationship.

Another way to test H0 : β j = 0 at α = 0.05 is to check whether
the value zero is in the 95% confidence interval of β j or not.18 In 18 In general, a level α test would

correspond to a 100(1− α)% confidence
interval.

the Boston data example with only lstat as predictor, zero is not in
the 95% confidence interval of β1, and thus the slope parameter is
significantly different from zero with level α = 0.05.

Caution must be taken to interpret results from model with inter-
action terms. For example, let us investigate the summary of model
fit with lstat, age and lstat:age interaction that we saw previously.

summary(int_ols)

##

## Call:

## lm(formula = medv ~ lstat * age, data = Boston)

##

## Residuals:

## Min 1Q Median 3Q Max

## -15.806 -4.045 -1.333 2.085 27.552

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 36.0885359 1.4698355 24.553 < 2e-16 ***
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## lstat -1.3921168 0.1674555 -8.313 8.78e-16 ***
## age -0.0007209 0.0198792 -0.036 0.9711

## lstat:age 0.0041560 0.0018518 2.244 0.0252 *
## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 6.149 on 502 degrees of freedom

## Multiple R-squared: 0.5557, Adjusted R-squared: 0.5531

## F-statistic: 209.3 on 3 and 502 DF, p-value: < 2.2e-16

Note that the interaction term is statistically significant but the main
effect of age is not significant. Thus we can not say age is not associ-
ated with Y even though the man effect is not significant. Also, we
can not drop age from the model since age:lstat interaction needs
to be in the model.

F test

In the multiple linear regression with p predictors, we investigate the
whether the linear model is at all needed by testing H0 : β1 = . . . =
βp = 0 vs. H1 : at least on β j is non-zero. We can use F test to do so.
In general, we can test for any subset of the predictors using F-test,
that is,

H0 : βp−q+1 = . . . = βp = 0,

where we are testing the effects of the last q predictors (last q columns
of X).

F-test for H0 : βp−q+1 = . . . = βp = 0

Let RSS0 be the residual sum of squares of the model where
we fit all the predictors except the last q predictors. Recall RSS
denotes the residual sum of squares for the full model. The
F-statistic is

F =
(RSS0 − RSS)/q

RSS/(n− (p + 1))
.

We reject H0 if the observed value of F is “large enough”. Equiva-
lently, a formula of the p-value of this test is available as well.

Let us visit the interaction model with lstat, age and lstat:age

as predictors – results were saved in the int_ols object. Mathemati-
cally, we write the model as

Yi = β0 + Xi1β1 + Xi2β2 + Xi1Xi2β3 + ε,

where Xi1 and Xi2 correspond to lstat and age, respectively. Sup-
pose we want to test the overall model, that is, jointly test the effects
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of all the three terms, H0 : β1 = β2 = β3 = 0. The F-test results can be
found at the bottom of the summary output for this model:

summary(int_ols)

##

## Call:

## lm(formula = medv ~ lstat * age, data = Boston)

##

## Residuals:

## Min 1Q Median 3Q Max

## -15.806 -4.045 -1.333 2.085 27.552

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 36.0885359 1.4698355 24.553 < 2e-16 ***
## lstat -1.3921168 0.1674555 -8.313 8.78e-16 ***
## age -0.0007209 0.0198792 -0.036 0.9711

## lstat:age 0.0041560 0.0018518 2.244 0.0252 *
## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 6.149 on 502 degrees of freedom

## Multiple R-squared: 0.5557, Adjusted R-squared: 0.5531

## F-statistic: 209.3 on 3 and 502 DF, p-value: < 2.2e-16

Note the line: “F-statistic: 209.3 on 3 and 502 DF, p-value:

< 2.2e-16”. The very small p-value indicates that we reject H0, and
the model is useful in predicting Y.

Alternatively, we can fit two models: the full model (int_ols)
and another model with only intercept, and conduct F-test ourselves
using the anova() function in R.

# Full model already fitted: int_ols

# Reduced model with only intercept

model_red <- lm(medv ~ 1, data = Boston)

anova(model_red, int_ols)

## Analysis of Variance Table

##

## Model 1: medv ~ 1

## Model 2: medv ~ lstat * age

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 505 42716

## 2 502 18978 3 23739 209.31 < 2.2e-16 ***
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## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Notice that we have obtained identical F-statistic and p-value com-
pared to those in the summary output.

Now suppose we want to test “whether age have any association
with response” or not. Since we have the interaction term, we have
to test for both main and interaction effects of age. Thus we test
H0 : β2 = β3 = 0. We take the second approach to do this.

# Full model already fitted: int_ols

# Reduced model with only intercept and lstat

model_without_age <- lm(medv ~ lstat, data = Boston)

anova(model_without_age, int_ols)

## Analysis of Variance Table

##

## Model 1: medv ~ lstat

## Model 2: medv ~ lstat * age

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 504 19472

## 2 502 18978 2 494.67 6.5425 0.001567 **
## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Here we have observed F-statistic 6.5425 with a p-value of 0.001567.
If we use level α = 0.05, we reject H0, and can conclude that age does
have association with response.

When q = 1, that is, we are testing for one predictor only, the
t-test and F-test are quivalent. In fact, the square of the t-statistic
will give the F-statistic. Check this from summary of simple_ols
when we test for only lstat.

So why do we need the F-test when we can examine t-test results
for each predictor in our model? Can we not conclude the “model
is useful in predicting response” if at least one t-test gives signifi-
cant result without performing overall F-test? Indeed, we can not
make such a claim. The main issue if type I error or level of the test.
Typically, we set α = 0.05 as level of the tests. That means, for indi-
vidual t-tests, there is a 5% chance that some effect will be detected
as significant when it is actually not significant. Thus, we might have
about 0.05 ∗ p many false significant results,19 just by chance, even 19 Especially when there are large

number of predictors (large p).though none of the predictors might be useful. In fact, for large p,
it is very likely we will observe at least one false significance just by
chance, and incorrectly conclude that the model is useful. However,
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the F-statistic does not suffer from this problem because it adjusts for
the number of predictors. If H0 is true, there is only a 5% chance that
the F-statistic detect a false significance regardless of the number of
predictors.

Evaluating model performance

Like any other learner, we need ways to evaluate model performance
of linear regression. We will discuss how to assess model fit in the
training data, and then in unseen test observations.

Training set performance

We can measure how well the model fits the training data by using
the following measures:

• Residual squared error (RSE).

• Coefficient of determination, R2.

• F statistic discussed before

We have seen RSE as the estimator of σ in the previous sections.
In general, RSE quantifies the uncertainty in prediction on Y from X
even if the true regression parameters were known. We can view RSE as
the amount the response will deviate on average from the true regres-
sion line. A small RSE would indicate a good regression fit. In the
Boston data example with only lstat as predictor described above,
we have RSE = 6.22. Thus, even if we knew the true regression line
(assuming that the linear model is correct), a prediction of medv based
on lstat would still be off by 6.22 units on average. In the Boston

data, the mean value of medv over all values of lstat is 22.53. Thus
we are making an error in the amount of 28 percent.

The RSE is considered a measure of the lack of fit of the model.
Small values of RSE imply the predictions are close to the observed
values which indicate good model fit. Large values of RSE would
indicate that the model did not fit the data well. However, it is often
not clear what values of RSE is acceptable. The coefficient of determi-
nation (R2) is another option to measure goodness of fit.

Coefficient of determination: R2

Define the total sum of squares (TSS) as ∑i(Yi − Ȳ)2. Recall RSS
is the residual sum of squares. Then

R2 = 1− RSS
TSS

.
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TSS measures the total variance in the response20. We can think 20 Note that TSS is proportional to the
sample variance of the Y’s.of TSS as the amount of variability inherent in the response before

the regression is performed. In contrast, RSS measures the amount
of variability that is left unexplained after performing the regression.
Thus we can interpret R2 as the proportion of variance in the response
explained by the model. It can be shown that 0 ≤ R2 ≤ 1, with larger
values indicting better fit. R2 values close to zero would indicate that
perhaps the linear model is wrong, and/or the error variance is high.
Another way to interpret R2 is that

R2 = (correlation coefficient between observed and predicted values)2.

Test set performance

We can use the techniques and data splitting methods (CV, Bootstrap,
holdout etc) to evaluate model performance on unseen test data.
For example, the code below uses 5-fold CV, repeated 10 times, to
estimate the test error for the model with lstat, age and lstat:age

as predictors.

set.seed(1001)

# control params

cv <- trainControl(method = "repeatedcv",

number = 5,

repeats = 10)

# training

res <- train(medv ~ lstat * age,

data = Boston,

method = "lm",

trControl = cv)

res

## Linear Regression

##

## 506 samples

## 2 predictor

##

## No pre-processing

## Resampling: Cross-Validated (5 fold, repeated 10 times)

## Summary of sample sizes: 404, 405, 406, 404, 405, 405, ...

## Resampling results:

##

## RMSE Rsquared MAE

## 6.269136 0.5467627 4.542126

##

## Tuning parameter ’intercept’ was held constant at a value of TRUE
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We can compare several regression models as well. In the code
below, we fit five models, and compare their test RMSE values using
10 times repeated 5-fold CV. Note the use of the resample() function
from caret package. Figure 10 shows boxplots of estimated test
errors using CV for the model.

set.seed(1001)

# control params

cv <- trainControl(method = "repeatedcv",

number = 5,

repeats = 10)

# training

model1 <- train(medv ~ lstat + age,

data = Boston,

method = "lm",

trControl = cv)

model2 <- train(medv ~ lstat * age,

data = Boston,

method = "lm",

trControl = cv)

model3 <- train(medv ~ lstat + age + I(lstatˆ2) + I(ageˆ2),

data = Boston,

method = "lm",

trControl = cv)

model4 <- train(medv ~ lstat * age + I(lstatˆ2) + I(ageˆ2),

data = Boston,

method = "lm",

trControl = cv)

model5 <- train(medv ~ .,

data = Boston,

method = "lm",

trControl = cv)

# Comparison

rsm <- resamples(list(model1, model2, model3, model4, model5))

summary(rsm, metric = "RMSE")

##

## Call:

## summary.resamples(object = rsm, metric = "RMSE")

##

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu



ST 563 linear regression 20

## Models: Model1, Model2, Model3, Model4, Model5

## Number of resamples: 50

##

## RMSE

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

## Model1 5.339992 5.854950 6.136734 6.195250 6.542320 7.384349 0

## Model2 4.919853 5.910121 6.241548 6.272189 6.713179 7.531853 0

## Model3 4.379361 4.951992 5.399021 5.333451 5.710442 6.215090 0

## Model4 4.483109 4.989531 5.271986 5.234163 5.588847 6.136971 0

## Model5 3.889329 4.561428 4.865174 4.896241 5.279765 6.007630 0

# Comparison plots

bwplot(rsm, metric = "RMSE")

RMSE

Model5

Model4

Model3

Model1

Model2

4 5 6 7

Figure 10: Boxplots of estimated test
RMSE for different models.

Models 1 and 2 above are similar in test performance, as are model
3 and 4. But Models 3 and 4 are better that 1 and 2. Also, it seems
that, as far as prediction accuracy is concerned, adding lstat:age

interaction term does not improve prediction performance by much.
Overall, model 5 (regression with main effects of all predictors) per-
forms the best among the five model considered above.

Model diagnostics

To estimate standard errors, and to perform inference, we needed
certain assumptions on the errors and the model as a whole:

• The relationship between Y and X’s are indeed as posited by the
linear regression model.

• Errors constant variance σ2.

• Errors are normally distributed.

Other practical issue include:

• Multicollinearity among predictors

• Presence of influential points

For our inference to be valid, we need to make sure the assumptions
mentioned above are satisfied. We present some diagnostics methods
to address each of the issues mentioned above.

Deviation from linearity

To evaluate whether the relationship posited by the fitted regression
model actually captures the true relationship, we can use residual
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plots. For simple linear regression, we can plot the residuals vs. the
predictor. For multiple linear regression, it is easier to plot residual
vs. the predicted responses. If the model specification is adequate,
there should be no clear pattern in the residual plot. In contrast, any
pattern in the residual plot would indicate the model does not cap-
ture the relationship between X and Y well. In the later case, trans-
forming data (either X or Y or both) might prove useful. Alterna-
tively, a non-linear/non-parametric regression might be considered as
well.
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Figure 11: Residual vs Fitted values for
two linear models fit on Boston data:
regression of ‘medv‘ on lstat, age and
their two-way interaction (left plot), and
regression of log(medv) on lstat and
lstat2 (right plot).

In R, the plot() command will produce residual plot, along with
other diagnostic plots for linear models.21 Figure 11 shows residual

21 See ?plot.lm() for details.

plots for two models: regression of medv on lstat, age and their two-
way interaction (left plot), and regression of log(medv) on lstat and
lstat2 (right plot). the red lines are smooths of the plot to easily
visualize any patterns in the scatterplots. We see the the left plot
shows a non-linear pattern indicating that the fitted model is not
adequate. The right plot shows little pattern suggesting a better fit.
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Figure 12: Example of a residual plot
with non-constant error variance

The standard errors, confidence intervals, and hypothesis testing
procedures discussed so far depends on the assumption of constant
variance of the errors: var(εi) = σ2. We call such errors homoscedastic.
If errors have different variance, such phenomenon is called het-
eroscedasticity. In the residual plot (bottom panel) in Figure 11, the
black dashed lines track the 5% and 95% quantiles of the residuals
accross predicted values. We see that residual variability is slightly
higher for smaller values of prediction, but overall the constant vari-
ance assumption seems reasonable here. If, for some other residual
plot, we see a “megaphone shape” then constant variable assumption
would be questionable, see for example, Figure 12.

Normality of errors

Normality of errors are needed for development of confidence inter-
vals and testing procedures discussed above. However, this assump-
tion can be relaxed for large enough sample size. Usually, visual
displays such as normal Q-Q plot of the residuals is used to check
normality assumption. If the points align with the diagonal line well
enough, we can conclude that the normality assumption is satisfac-
tory. However, keep in mind that Q-Q plot is merely a visual tool,
and often samples from non-normal distributions can produce nor-
mal like Q-Q plot (and vice-versa).
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Influential points
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Figure 13: Normal Q-Q plot of residu-
als.

Outliers and high leverage points can be detected using residual
plots with studentized residuals and leverage statistics.

Recall our linear model is Y = Xβ + ε. We estimate the regression
parameter as β̂ = (XTX)−1XTY. Thus we we can predict the entire
response vector Y by plugging-in β̂ as

Ŷ = Xβ̂ = [X(XTX)−1XT ]Y = HY,

where H = X(XTX)−1XT . The matrix H is called the hat matrix.
Detection of influential points depend on the following two results:

It can be shown that variance of the i-th residual, var(Yi − Ŷi) =

σ2(1−Hii), where Hii is the i-th diagonal entry of H.

The i-th diagonal entry of H, Hii, is called the leverage of the i-th
observation.

We define studentized residuals as residuals divided by their stan-
dard deviations. We can plot the studentized residuals against fitted
values to detect outliers. Observations whose studentized residuals
are quite far away from the rest22 are possible outliers. The function 22 A rule of thumb could be that pos-

sible outliers are observations with
studentized residuals more than 3 in
absolute value.

rstudent() can be used to compute studentized residuals. Figure 14

shows an example of such a plot. The point with absolute residual of
more than 4 might be a potential outlier.
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Figure 14: Example of a plot of absolute
studentized residuals vs. fitted values.
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Figure 15: Example of a plot of absolute
studentized residuals vs. leverage.

We can plot the studentized residuals vs. leverage statistics to
detect possible high leverage points. Figure 15 shows an example of
such a leverage plot. It can be shown that value of leverage leverage
statistic is always between 1/n and 1. Also, the average value of
leverages for all the observations is (p + 1)/n, where p + 1 is the
number of columns in the model matrix X. Thus, an observation
can be a potential high leverage point if a given observation has a
leverage statistic much larger that (p + 1)/n. In Figure 15, we have
n = 506 and p = 2, and thus (p + 1)/n = 0.0059289. The point to
the far right of the plot with leverage more that 0.10 might be a high
leverage point. We can obtain leverage statistics using the function
hatvalues().

Collinearity

Collinearity refers to high correlation between two or more pre-
dictors. Presence of such high correlation may lead to numerical
instability of linear model fitting, reduce accuracy of estimation of
regression coefficients, and reduce power of hypothesis tests.

Consider the two linear model fits for Boston data: (A) medv on
tax and rad, and (B) medv on lstat and tax. The results are shown
below.
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term estimate std.error statistic p.value

Model A
(Intercept) 35.6359 1.3465 26.4652 0.0000

tax -0.0386 0.0052 -7.4847 0.0000

rad 0.2762 0.0997 2.7703 0.0058

Model B
(Intercept) 34.6128 0.5676 60.9848 0.0000

lstat -0.9326 0.0444 -20.9986 0.0000

rad -0.0293 0.0364 -0.8057 0.4208

Notice that in presence of tax the estimate and standard errors
of rad changes drastically. This is because, tax and rad are highly
correlated – Figure 16 shows the correlation plot of Boston data,
where we see that indeed tax and rad have high correlation.
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Figure 16: Correlation plot of Boston
data.

If more that two predictors are closely related, we call the situa-
tion multicollinearity. Such situations can not be detected by simply
inspecting the corrlation plot. Instead, we may look at the variance
inflation factor (VIF).

Variance inflation factor (VIF)

The variance inflation factor is the ratio of the variance of β̂ j

when fitting the full model to the variance if fit on its own.
The VIF can be computed as follows:

VIF = (1− R2
j )
−1,

where R2
j is the R2 value from a regression of Xj onto the

remaining predictors.

The minimum value of VIF is 1. As a rule of thumb, a VIF value
larger than 5 or 10 indicates a problematic amount of multicollinear-
ity. We can use car::vif() to calculate VIFs. In our example above,
the VIF for models (A) and (B) are shown below.

## Model A:

## tax rad

## 5.831426 5.831426

## Model B:

## lstat rad

## 1.313723 1.313723

In presence of multicollinearity, we can exclude the problematic
predictors. Alternatively, we can combine the collinear predictors.,
e.g., taking average.
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Prediction

As mentioned before, we can predict the response associated with a
set of predictors x1, . . . , xp as

Ŷ = β̂0 + x1 β̂1 + . . . + xp β̂p.

In order to quantify uncertainty of the prediction, we can use a
prediction interval. We can use the function predict() to compute
both the prediction and the corresponding prediction interval. The
following code produces both for the new data point lstat = 5 for
the simple linear regression of medv on lstat: fit is the point pred-
cition, lwr and upr are the lower and upper bound of the predic-
tion interval, respectively. Note the function argument interval =

"prediction".23 23 See ?predict.lm for details.

simple_ols <- lm(medv ~ lstat, data = Boston)

pred_int <- predict(simple_ols,

newdata = data.frame(lstat = 5),

interval = "prediction",

level = 0.95)

pred_int

## fit lwr upr

## 1 29.80359 17.56567 42.04151

Note that the point prediction is simply estimate of E(Y|x1, . . . , xp).
However, the prediction interval is not the same as the confidence
interval of E(Y|x1, . . . , xp). This is because predicting the actual re-
sponse Y is more difficult that estimating the mean E(Y|X). For
the ideal case where we know the exact values of β0, . . . , βp, then
E(Y|x1, . . . , xp) is exactly determined. But even then, the response Y
has some variability due to error ε. Thus, even if we fully know the
regression line, we can not predict the response exactly. The predic-
tion interval captures this additional uncertainty. For example, the
confidence interval of E(Y|x1, . . . , xp) for the example shown above is
as follows. Note the confidence interval is narrower than the predic-
tion interval.

conf_int <- predict(simple_ols,

newdata = data.frame(lstat = 5),

interval = "confidence",

level = 0.95)

We can interpret these intervals as: when lstat = 5, we have
95% confidence that the mean value of medv will fall in (29.01, 30.6)
– this is the confidence interval. But medv of a randomly chosen new
observation with fall in (17.57, 42.04).
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Including qualitative predictors

So far we have only discussed models where X’s are continuous
variables. We can accommodate categorical predictors as well. To do
so, we need to create new binary predictors representing each of the
categories of the original predictors.

As an example, consider the variable chas (Charles River dummy
variable, 1 = tract bounds river; 0 = otherwise.). This is a binary
variable already coded 0/1. Suppose we write a linear model 10
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Figure 17: Regression line for chas = 0

(solid red) and 1 (dashed black) based
on a linear model with main effects of
chas and lstat.
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Figure 18: Regression line for chas
= 0 (solid red) and 1 (dashed black)
based on a linear model with main
effects of chas and lstat, as well as their
interaction.

Yi = β0 + Xi1β1 + Xi2β2 + εi,

where Yi denotes medv, Xi1 denotes lstat and X2i denotes chas. This
model effectively represents two lines, one for each value of chas.
The display below gives the two regression lines:

chas = 0 : E(Yi|X1i, X2i = 0) = β0 + Xi1β1.

chas = 1 : E(Yi|X1i, X2i = 1) = (β0 + β2) + Xi1β1.

Thus, the linear model above with only main effect of chas proposes
linear relationship between medv and lstat where the two lines are
parallel (same slope but possibly different intercept), see Figure 17.
The solid red line corresponds to chas = 0 and the dashed black line
for chas = 1.

If we include an interaction term:

Yi = β0 + Xi1β1 + Xi2β2 + Xi1Xi2β3 + εi,

then the two regression lines are allowed to have different slope as
well as different intercept, as shown below:

chas = 0 : E(Yi|X1i, X2i = 0) = β0 + Xi1β1.

chas = 1 : E(Yi|X1i, X2i = 1) = (β0 + β2) + Xi1(β1 + β3).

See Figure 18 for the fitted lines.
The ideas presented above can be generalized to categorical vari-

ables with more that two levels. Suppose that Zi is a variables with
three levels, “L1”, “L2” and “L3”. Then we need to create 3− 1 = 2
dummy variables:24 24 Recall that for any event A, we define

the indicator function I(A) = 1 if A is
true, 0 otherwise.Zi1 = I(Zi = ”L1”), and Zi2 = I(Zi = ”L2”)

We do not need a new dummy for level “L3” since Zi1 = Zi2 = 0
would encode “L3”.

Finally, we should be cautious when there are many categorical
variables in the data. Since we need to expand each of them into
multiple indicator variables, the number of predictors can increase
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by a lot. Thus we need to be careful if we intend use data splitting
methods like CV. Consider for example the Ames housing data.25 25 See ?ames_raw after loading

AmesHousing package.We consider the variable Sale_Price as response, and the rest as
covariates. Out of 82 covariates, 42 are categorical. However, after
expanding each categorical variable in to dummies, we will in fact
have a total of 309 predictors, not simply 82. If the sample size were
smaller, say n = 500, standard techniques like 5-fold CV (training
set size will be 400) or 70% − 30% split (training set size 350) may
produce unreliable results due to number of predictors being close to
training set size. In general, we should always check the size of the
model matrix before choosing a proper data splitting method.

Subset selection

In practice, many of many of the variables is a dataset may not be
associated with the response of interest. Including such irrelevant
predictors in the model may lead to unnecessary complexity in the
resulting model and therefore more variability in the estimates. Often
we would like to remove the unnecessary variables before building
our final model. Such a procedure will also help in interpretation of
the model as well. This process of selecting relevant variables corre-
sponding to a response is called variable selection or feature selection.
In this section, we discuss methods to select a subset of the available
covariates that we believe to be related to the response. Then the final
model will be built by using least squares using the selected subset.

Metrics for model selection

Usage of RSE and R2 from the training set in model selection is unde-
sirable as they will always choose the largest model possible – mini-
mum RSE and maximum R2 will occur when number of predictors is
largest.

We can use the data splitting methods to estimate test errors, but
sometimes they can be computationally expensive. Consider the
Boston data with p = 12. If we want to investigate performance of all
possible subsets, we have to go though 212 = 4096 models. On top of
that if we want to use 5-fold CV, repeated 50 times, we have to fit a
total of 212 × 5× 50 = 1.024× 106 models.

Alternatively, there are metrics available that adjusts training per-
formance metrics such as RSS and R2 to balance both goodness of
fit and model complexity/size, so that a separate training set is not
needed for model comparison. These approaches can be used to se-
lect among a set of models with different numbers of variables. Four
such metrics are:

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu



ST 563 linear regression 27

• Adjusted R2,

• Akaike information criterion (AIC),

• Bayesian information criterion (BIC), and

• Cp statistic.

Adjusted R2 re-scales total sum of squares and RSS, before taking
their ratio, to account for the number of predictors in the model. In
contrast, AIC, BIC and Cp adds a penalty term involving number of
predictors to the training RSS to account for model size.

Suppose we have a model with d predictors. Recall that R2 =

1− RSS/TSS. Adjusted R2 is defined as

Adjusted R2 = 1− RSS/(n− d− 1)
TSS/(n− 1)

,

where d is the number of predictors in the model. Maximizing the
adjusted R2 is equivalent to minimizing RSS/(n − d − 1). Unlike
RSS, which monotonically decreases as d increases, RSS/(n− d− 1)
will increase and decrease as d changes. We choose the model with
maximum adjusted R2.

AIC, BIC and Cp all have the form for a model with d predictors:

[RSS + P(n, d, σ̂2)]/n,

where P(n, d, σ̂2) is a penalty term involving sample size, number of
predictors in the model and estimated error variance using the full
model containing all predictors. The three metrics use the following
form of P:26 26 See Introduction to Statistical Learn-

ing, Chapter 6.1.3.
P(n, d, σ̂2) =

{
2dσ̂2, for Cp, AIC

log(n) d σ̂2, for BIC

We choose the model which gives minimum AIC/BIC values.
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Figure 19: Example of model selection
using AIC/Cp, BIC and adjusted R2.

It seems AIC and Cp are equivalent from the formula above – this
happens for linear regression model using least squares and normal
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errors. However, AIC and BIC both have general forms involving
log-likelihood values, and can be computed for general regression
problems.

We can see from the penalty terms that BIC tend to have a higher
penalty than AIC/Cp as n increases. Thus BIC tends to produce
smaller models compared to AIC/Cp. Figure 19 shows an example of
model selection using AIC/Cp, BIC and adjusted R2.

Best subset selection

In this approach, we need to fit a separate least square model to each
of the possible combination of the p predictors in the dataset, that is,
we need to fit all 2p possible models. We can either use CV/holdout
or AIC/BIC to choose the best model. The following algorithm shows
the best subset selection procedure.

1. Start with the model with only intercept, and no other predictor.
Denote the model by M0.

2. For k = 1, . . . , p, fit all Cp
k models with k predictors, and pick the

best model (smallest RSE, largest R2 etc.). Denote the resulting
model as Mk.

3. Among the models M0, M1, . . . , Mp, choose the best model using
AIC, BIC, adjusted R2 or CV.

Note that we can use cross-validation for the entire set of 2p possi-
ble models if we have such computational resources (for larger p, this
procedure can have tremendous computational burden). The algo-
rithm above reduces this computational burden using Step 2, where it
identifies the best model for each subset size on the training set. Thus
we reduce the problem from 2p possible models to p + 1 possible
models. However, performing CV, if possible, has the distinct advan-
tage over AIC/BIC that it directly estimates the test error for each
models.

In R, we can use regsubsets() in the leaps package to perform
best subset selection. We demonstrate this procedure using Boston

data. Note the usage of the argument nvmax = 11. This ensures that
we will search of subsets up to size 12 (Since Boston data has 12

predictors).

library(leaps)

# Best model for each model size

bestmod <- regsubsets(medv ~ .,

data = Boston,

nvmax = 12)
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# summary

mod_summary <- summary(bestmod)

mod_summary

## Subset selection object

## Call: regsubsets.formula(medv ~ ., data = Boston, nvmax = 12)

## 12 Variables (and intercept)

## Forced in Forced out

## crim FALSE FALSE

## zn FALSE FALSE

## indus FALSE FALSE

## chas FALSE FALSE

## nox FALSE FALSE

## rm FALSE FALSE

## age FALSE FALSE

## dis FALSE FALSE

## rad FALSE FALSE

## tax FALSE FALSE

## ptratio FALSE FALSE

## lstat FALSE FALSE

## 1 subsets of each size up to 12

## Selection Algorithm: exhaustive

## crim zn indus chas nox rm age dis rad tax ptratio lstat

## 1 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " "*"

## 2 ( 1 ) " " " " " " " " " " "*" " " " " " " " " " " "*"

## 3 ( 1 ) " " " " " " " " " " "*" " " " " " " " " "*" "*"

## 4 ( 1 ) " " " " " " " " " " "*" " " "*" " " " " "*" "*"

## 5 ( 1 ) " " " " " " " " "*" "*" " " "*" " " " " "*" "*"

## 6 ( 1 ) " " " " " " "*" "*" "*" " " "*" " " " " "*" "*"

## 7 ( 1 ) " " "*" " " "*" "*" "*" " " "*" " " " " "*" "*"

## 8 ( 1 ) "*" "*" " " "*" "*" "*" " " "*" " " " " "*" "*"

## 9 ( 1 ) "*" "*" " " " " "*" "*" " " "*" "*" "*" "*" "*"

## 10 ( 1 ) "*" "*" " " "*" "*" "*" " " "*" "*" "*" "*" "*"

## 11 ( 1 ) "*" "*" " " "*" "*" "*" "*" "*" "*" "*" "*" "*"

## 12 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"

The summary shows, for each model size, which predictors give
the best model (based on training set performance). Now we can use
either AIC/BIC or adjusted R2 to choose the best model among these
12 models.

metrics <- data.frame(aic = mod_summary$cp,

bic = mod_summary$bic,

adjR2 = mod_summary$adjr2)

metrics
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## aic bic adjR2

## 1 343.848074 -385.0521 0.5432418

## 2 170.658081 -496.2582 0.6371245

## 3 98.320999 -549.4767 0.6767036

## 4 78.641892 -561.9884 0.6878351

## 5 47.647706 -585.6823 0.7051702

## 6 35.388139 -592.9553 0.7123567

## 7 30.246610 -593.6275 0.7156820

## 8 24.822922 -594.6734 0.7191751

## 9 18.162742 -597.0648 0.7233609

## 10 9.120223 -602.0442 0.7288734

## 11 11.046965 -595.8928 0.7283649

## 12 13.000000 -589.7145 0.7278399

The minimum AIC/BIC as well as maximum adjusted R2 occurs
for model size 10. The best fitted model is below.

round( coef(bestmod, 10), 2)

## (Intercept) crim zn chas nox rm

## 41.45 -0.12 0.05 2.87 -18.26 3.67

## dis rad tax ptratio lstat

## -1.52 0.28 -0.01 -0.93 -0.55

As mentioned before, investigating all off the 2p models can be
computationally intensive for large values of p. The following two
approaches provide computationally efficient alternatives using step-
wise subset selection.

Forward Stepwise Selection

Recall that the best subset selection procedure considers all 2p possi-
ble models containing subsets of the p predictors. In contrast, forward
stepwise selection considers a much smaller set of models. The algo-
rithm as as follows:
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Figure 20: AIC, BIC and Adjusted R2

for best subset selection in Boston data.

1. Start with the model with only intercept, and no other predictor.
Denote the model by M0.

2. For k = 0, . . . , p− 1,

• consider all p − k models that adds one more predictor to the
existing predictors in Mk.

• choose the best among these p− k models; denote this model by
Mk+1

3. Among the models M0, M1, . . . , Mp, choose the best model using
AIC, BIC, adjusted R2 or CV.
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Forward stepwise selection involves fitting one intercept-only
model, along with p− k models in the kth iteration, for k = 0, . . . , p−
1. This reduces the computational complexity substantially from the
best subset selection, which fits Cp

k models for each k = 1, . . . , p. We
should keep in mind that, since forward stepwise selection does not
go through all possible models, there is no assurance that it will find
the best model.

The following code performs forward stepwise selection for
Boston data example.

forward <- regsubsets(medv ~ .,

data = Boston,

nvmax = 12,

method = "forward")

# summary

mod_summary <- summary(forward)

mod_summary

## Subset selection object

## Call: regsubsets.formula(medv ~ ., data = Boston, nvmax = 12, method = "forward")

## 12 Variables (and intercept)

## Forced in Forced out

## crim FALSE FALSE

## zn FALSE FALSE

## indus FALSE FALSE

## chas FALSE FALSE

## nox FALSE FALSE

## rm FALSE FALSE

## age FALSE FALSE

## dis FALSE FALSE

## rad FALSE FALSE

## tax FALSE FALSE

## ptratio FALSE FALSE

## lstat FALSE FALSE

## 1 subsets of each size up to 12

## Selection Algorithm: forward

## crim zn indus chas nox rm age dis rad tax ptratio lstat

## 1 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " "*"

## 2 ( 1 ) " " " " " " " " " " "*" " " " " " " " " " " "*"

## 3 ( 1 ) " " " " " " " " " " "*" " " " " " " " " "*" "*"

## 4 ( 1 ) " " " " " " " " " " "*" " " "*" " " " " "*" "*"

## 5 ( 1 ) " " " " " " " " "*" "*" " " "*" " " " " "*" "*"

## 6 ( 1 ) " " " " " " "*" "*" "*" " " "*" " " " " "*" "*"

## 7 ( 1 ) " " "*" " " "*" "*" "*" " " "*" " " " " "*" "*"

## 8 ( 1 ) "*" "*" " " "*" "*" "*" " " "*" " " " " "*" "*"
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## 9 ( 1 ) "*" "*" " " "*" "*" "*" " " "*" "*" " " "*" "*"

## 10 ( 1 ) "*" "*" " " "*" "*" "*" " " "*" "*" "*" "*" "*"

## 11 ( 1 ) "*" "*" " " "*" "*" "*" "*" "*" "*" "*" "*" "*"

## 12 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"

As before, the summary shows which predictors give the best
model (based on training set performance) for each model size. Next
we can choose the best model among these 12 models.

metrics <- data.frame(aic = mod_summary$cp,

bic = mod_summary$bic,

adjR2 = mod_summary$adjr2)

metrics

## aic bic adjR2

## 1 343.848074 -385.0521 0.5432418

## 2 170.658081 -496.2582 0.6371245

## 3 98.320999 -549.4767 0.6767036

## 4 78.641892 -561.9884 0.6878351

## 5 47.647706 -585.6823 0.7051702

## 6 35.388139 -592.9553 0.7123567

## 7 30.246610 -593.6275 0.7156820

## 8 24.822922 -594.6734 0.7191751

## 9 20.089732 -595.1344 0.7223035

## 10 9.120223 -602.0442 0.7288734

## 11 11.046965 -595.8928 0.7283649

## 12 13.000000 -589.7145 0.7278399

round( coef(forward, 10), 2)

## (Intercept) crim zn chas nox rm

## 41.45 -0.12 0.05 2.87 -18.26 3.67

## dis rad tax ptratio lstat

## -1.52 0.28 -0.01 -0.93 -0.55
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for forward stepwise selection in Boston
data.
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Backward Stepwise Selection

Like forward selection, backward selection also considers a smaller
set of models. It start from including all the predictors, and gradually
removes one predictor at a time. The following algorithm performs
backward stepwise selection.

1. Start with the model with all the predictors included. Denote the
model by Mp.

2. For k = p, p− 1 . . . , 1,

• consider all k models that contain all but one of the predictors
in Mk, for a total of k− 1 predictors.

• choose the best among these k models; denote this model by
Mk−1

3. Among the models M0, M1, . . . , Mp, choose the best model using
AIC, BIC, adjusted R2 or CV.

Like forward stepwise selection, backward stepwise selection is
not guaranteed to yield the best model containing a subset of the p
predictors. The following code performs backward stepwise selection
for Boston data example.

backward <- regsubsets(medv ~ .,

data = Boston,

nvmax = 12,

method = "backward")

# summary

mod_summary <- summary(backward)

mod_summary

## Subset selection object

## Call: regsubsets.formula(medv ~ ., data = Boston, nvmax = 12, method = "backward")

## 12 Variables (and intercept)

## Forced in Forced out

## crim FALSE FALSE

## zn FALSE FALSE

## indus FALSE FALSE

## chas FALSE FALSE

## nox FALSE FALSE

## rm FALSE FALSE

## age FALSE FALSE

## dis FALSE FALSE

## rad FALSE FALSE
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## tax FALSE FALSE

## ptratio FALSE FALSE

## lstat FALSE FALSE

## 1 subsets of each size up to 12

## Selection Algorithm: backward

## crim zn indus chas nox rm age dis rad tax ptratio lstat

## 1 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " "*"

## 2 ( 1 ) " " " " " " " " " " "*" " " " " " " " " " " "*"

## 3 ( 1 ) " " " " " " " " " " "*" " " " " " " " " "*" "*"

## 4 ( 1 ) " " " " " " " " " " "*" " " "*" " " " " "*" "*"

## 5 ( 1 ) " " " " " " " " "*" "*" " " "*" " " " " "*" "*"

## 6 ( 1 ) "*" " " " " " " "*" "*" " " "*" " " " " "*" "*"

## 7 ( 1 ) "*" " " " " " " "*" "*" " " "*" "*" " " "*" "*"

## 8 ( 1 ) "*" " " " " " " "*" "*" " " "*" "*" "*" "*" "*"

## 9 ( 1 ) "*" "*" " " " " "*" "*" " " "*" "*" "*" "*" "*"

## 10 ( 1 ) "*" "*" " " "*" "*" "*" " " "*" "*" "*" "*" "*"

## 11 ( 1 ) "*" "*" " " "*" "*" "*" "*" "*" "*" "*" "*" "*"

## 12 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"

As before, the summary shows which predictors give the best
model (based on training set performance) for each model size. Next
we can choose the best model among these 12 models.

metrics <- data.frame(aic = mod_summary$cp,

bic = mod_summary$bic,

adjR2 = mod_summary$adjr2)

metrics

## aic bic adjR2

## 1 343.848074 -385.0521 0.5432418

## 2 170.658081 -496.2582 0.6371245

## 3 98.320999 -549.4767 0.6767036

## 4 78.641892 -561.9884 0.6878351

## 5 47.647706 -585.6823 0.7051702

## 6 43.504080 -585.2278 0.7079301

## 7 36.420912 -587.6576 0.7123077

## 8 27.487790 -592.0508 0.7177158

## 9 18.162742 -597.0648 0.7233609

## 10 9.120223 -602.0442 0.7288734

## 11 11.046965 -595.8928 0.7283649

## 12 13.000000 -589.7145 0.7278399

coef(forward, 10)

## (Intercept) crim zn chas nox rm
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## 41.45174748 -0.12166488 0.04619119 2.87187265 -18.26242664 3.67295747

## dis rad tax ptratio lstat

## -1.51595105 0.28393226 -0.01229150 -0.93096144 -0.54650916
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for backward stepwise selection in
Boston data.

In the Boston data example seen so far, results from using AIC,
BIC and adjusted R2 match – they all choose the same model. This
is not the case in general setting. We might have different “best”
models depending on the evaluation criterion we use. In that case,
we will just pick the criteria we like the most (e.g. BIC for typically
giving smaller models), and go with the corresponding best model.

Using the holdout and Cross-Validation for subset selection

As mentioned before, apart from AIC/BIC/adjusted R2, it is also
possible to use data splitting techniques such as holdout or CV for
model selection. Ideally, we can run CV for each of the 2p models,
and choose the one with best test error. However, such an approach
can be computationally expensive.

Alternatively, we can use the algorithms presented above and use
CV on them. It is important to recall our discussion in the previ-
ous chapters about proper implementation of CV: the entire model
building process, including any tuning, has to be applied to the train-
ing set. We can not simply use steps 1 and 2 on the full data to get
M0, . . . , Mp and then just use CV on the final models. The following
paragraph is quoted verbatim from the textbook to emphasize this
important point.

In order for these approaches to yield accurate estimates of the test
error, we must use only the training observations to perform all aspects of
model-fitting—including variable selection. Therefore, the determina-
tion of which model of a given size is best must be made using only the
training observations. This point is subtle but important. If the full data
set is used to perform the best subset selection step, the validation set
errors and cross-validation errors that we obtain will not be accurate
estimates of the test error.

— Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani,
An Introduction to Statistical Learning, second edition, 2021, page 271.
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Thus we can think the model size as tuning parameter here, since each
training set might yield different models even if the size remains the
same. We use holdout/CV to choose the best model size, and then
choose the best model of that size using the full data.

The algorithm of subset selection using holdout method is as fol-
lows:

• Split the observations into training and test sets.

• Apply best/forward/backward selection method on the training
set.

• For each model size, pick the best model, and compute test error
using test set.

• Choose the optimal model size that has minimum test error.

• Finally, perform best/forward/backward subset selection on the
full data set, and select the best model of the size chosen in the
previous step.

set.seed(1001)

## Create test and training sets

library(rsample)

data_split <- initial_split(Boston, prop = 0.8)

test_set <- testing(data_split)

train_set <- training(data_split)

## Best subset selection on the training data

best_train <- regsubsets(medv ~ .,

data = train_set,

nvmax = 12)

train_sum <- summary(best_train)

## For each model size, estimate test performance

# A function to predict and estimate error

# on the test set. Inputs are

# model size (mod_size),

# summary outout of the selection process (reg_summary)

# model matrix of the test data (test_model)

# test set response (test_resp)

test_err <- function(mod_size,

reg_summary,

test_model,

test_resp){

# get regression coefs
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betahat <- coef(reg_summary$obj, mod_size)

# get best subset of the specified size

sub <- reg_summary$which[mod_size, ]

# Create test model matrix, predcition, test error

model <- test_model[, sub]

yhat <- model %*% betahat

err <- mean((test_resp - yhat)ˆ2)

return(err)

}

## Apply the function above to each model size

test_model <- model.matrix(~ . - medv, data = test_set)

test_resp <- test_set$medv

hold_err <- sapply(1:12, test_err,

reg_summary = train_sum,

test_model = test_model,

test_resp = test_resp)

plot(hold_err, type = 'b', pch=19, lwd=2)
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## Best model size and refit of full data

size_opt <- which.min(hold_err)

bestmod <- regsubsets(medv ~ .,

data = Boston,

nvmax = 12)

coef(bestmod, size_opt)

## (Intercept) crim zn chas nox rm

## 41.45174748 -0.12166488 0.04619119 2.87187265 -18.26242664 3.67295747

## dis rad tax ptratio lstat

## -1.51595105 0.28393226 -0.01229150 -0.93096144 -0.54650916

In this particular example, we have the same 10-variable model
as before. We refit the full data set in order to obtain more accurate
estimates of the regression coefficient estimates. It is important that
we perform best/forward/backward subset selection on the full data
set and select the best model with 10 variables (for this example),
rather than simply using the variables that were obtained from the
training set. This is because the best model with 10 predictors on the
full data set may be different from the corresponding model on the
training set.

We can similarly use V-fold cross-validation as follows:

• Split the data into V equally sized folds.

• For v = 1, . . . , V:
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– Set v-th fold as test set, and the remaining folds as training set.
– Apply best/forward/backward selection method on the train-

ing set.
– For each model size, pick the best model, and compute test error

using test set.

• Choose the optimal model size that has minimum average test
error over V folds.

• Finally, perform best/forward/backward subset selection on the
full data set, and select the best model of the size chosen in the
previous step. 20
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Figure 23: Best subset selection using 5-
fold cross-validation. The gray lines are
test MSE profiles for the 5 folds. The
black line is the mean test MSE over the
folds. The red error bars indicate test
MSE +/- one SE.

Figure 23 shows the results best subset selection using a 10-fold CV.
The resulting model has size 10, and in fact is the same as the one
chosen by holdout in this example.

Notice that even though the model with 10 predictors give the
lowest test MSE, the models containing 5 – 9 predictors also have
similar (slightly higher) MSE values. Surely, if we repeated CV using
different folds, the exact minimum might change. In this setting, we
often use the one-standard-error rule: calculate the standard error of
the estimated test MSE from the 10 folds for each model size, and
then select the smallest model for which the estimated test error is
within one standard error of the minimum estimated MSE. If a set
of models are essentially equal in performance, then one-standard-
error rule would chose the the model with the smallest number of
predictors. In our example in Figure 23, one-standard-error rule
chooses a model with 5 predictors:

## (Intercept) nox rm dis ptratio lstat

## 37.4991961 -17.9965715 4.1633074 -1.1846623 -1.0457738 -0.5810836

As a final note on correctly implementing cross-validation in gen-
eral, we quote the following paragraph verbatim from Elements of
Statistical Learning, Section 7.10.2: The Wrong and Right Way to Do
Cross-validation:

Consider a classification problem with a large number of predictors,
as may arise, for example, in genomic or proteomic applications. A
typical strategy for analysis might be as follows:

1. Screen the predictors: find a subset of “good” predictors that show
fairly strong (univariate) correlation with the class labels

2. Using just this subset of predictors, build a multivariate classifier.
3. Use cross-validation to estimate the unknown tuning parameters

and to estimate the prediction error of the final model.
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Is this a correct application of cross-validation? Consider a scenario
with N = 50 samples in two equal-sized classes, and p = 5000 quanti-
tative predictors (standard Gaussian) that are independent of the class
labels. The true (test) error rate of any classifier is 50%. We carried out
the above recipe, choosing in step (1) the 100 predictors having highest
correlation with the class labels, and then using a 1-nearest neighbor
classifier, based on just these 100 predictors, in step (2). Over 50 simu-
lations from this setting, the average CV error rate was 3%. This is far
lower than the true error rate of 50%.

What has happened? The problem is that the predictors have an unfair
advantage, as they were chosen in step (1) on the basis of all of the
samples. Leaving samples out after the variables have been selected
does not correctly mimic the application of the classifier to a com-
pletely independent test set, since these predictors “have already seen”
the left out samples.

Even though the discussion above is in the context of classification,
the idea still applies to regression problems. Instead of misclassifica-
tion error rate, we will be concerned about test MSE.

If we do need to screen predictors for a specific regression model,
we need to do so without involving response, that is, using unsupervised
methods. This should be done before splitting data. Again we quote a
paragraph from Elements of Statistical Learning:

In general, with a multistep modeling procedure, cross-validation
must be applied to the entire sequence of modeling steps. In particular,
samples must be “left out” before any selection or filtering steps are
applied. There is one qualification: initial unsupervised screening steps
can be done before samples are left out. For example, we could select
the 1000 predictors with highest variance across all 50 samples, before
starting cross-validation. Since this filtering does not involve the class
labels, it does not give the predictors an unfair advantage.

Regularization/Shrinkage methods

Another approach to selecting relevant predictors is to fit a model
with all p predictors but put constraints on the regression coefficients.
This is called regularization of the estimates. It is done is such a way
that the resulting estimates are pulled towards zero – this is called
shrinkage. Without going into mathematical details, it can be shown
that shrinking the coefficients towards zero in this manner increases
their bias but significantly reduces their variance.

A common regularization method is to add an extra penalty term
to the usual least squares criterion. In other words, we minimize a
criterion of the form

∑
i
(Yi − β0 − Xi1β1 − . . . Xipβp)

2 + P,
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where the term P is a penalty term involving the regression coeffi-
cients. Depending on the form of the penalty terms, we have differ-
ent regression methods. In this section, we will discuss several such
estimation methods.

Ridge regression

Ridge regression shrinks the regression coefficients towards zero by
imposing a quadratic penalty. The ridge regression coefficient esti-
mates are obtained by minimizing27 27 Note that the intercept β0 is not

penalized.

∑
i
(Yi − β0 − Xi1β1 − . . .− Xipβp)

2 + λ
p

∑
j=1

β2
j ,

where λ ≥ 0 is a tuning parameter. The penalty term λ ∑
p
j=1 β2

j

is called a shrinkage penalty.28 Here λ controls the relative impact 28 The idea of using the sum-of-squares
of the parameters as penalty is also
used in neural networks – it is known
as weight decay.

of the two terms on the regression coefficient estimates. For large
values of λ, the quadratic penalty term dominates the criterion, and
the resulting estimates approach to zero. When λ = 0, there is no
penalty, and thus we get exactly the ordinary least squares estimates.
Thus we must select a reasonable value of λ to balance both the
terms.

Recall that X denotes the model matrix of the regression prob-
lem. We can show that ridge regression solutions have a closed form
expression (if we also penalize intercept):29 29 Here I denotes the identity matrix:

a diagonal matrix with all diagonal
elements being 1.β̂ridge = (XTX + λI)−1XTY.

Notice again that setting λ = 0 gives us the least squares estimates,
β̂. Also note that, for λ > 0, the matrix (XTX + λI) always has an
inverse even if X does not have full column rank. Thus, even in presence
of collinearity/redundant columns in X, ridge regression will still
produce unique regression estimates.30 30 This was the original motivation

behind development of ridge regres-
sion, see Hoerl and Kennard (1970),
Ridge Regression: Biased Estimation for
Nonorthogonal Problems, Technomet-
rics, 12, 55 – 67.

Figure 24 shows the estimated ridge regression coefficients for
different values of log(λ) in Boston data with medv as response, and
standardized predictors. The left most part of the plot corresponds to
λ = 0, and shows the least squares estimates. The right extreme of
the plot represents a large value of λ, and we see that all the coeffi-
cients are very close to zero.
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Figure 24: Ridge regression coefficients
for different values of lamda (log10

scale) for Boston data.

We can also view the ridge regression problem as a constrained
minimization problem,

minimize ∑
i
(Yi − β0 − Xi1β1 − . . .− Xipβp)

2

subject to the constraint
p

∑
j=1

β2
j ≤ t,
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for some t > 0. The second formulation of ridge regression ex-
plicitely puts constraint on the size of the regression coefficients. The
parameters λ in the penalized formulation and t in the constraint
formulation are connected via an one-to-one relationship.

Based on the second formulation, we can think of ridge regres-
sion as minimizing RSS of a linear regression while preventing the
regression coefficients from getting too large or small. The parameter
t determines how large/small regression coefficients can become. If
t is set to very large, then we are effectively allowing β’s to take any
value (equivalent to setting a small λ). On the other hand, a small
t will force the β’s to be smaller and closer to zero (equivalent to
setting large λ).

In presence of multicollinearity, the corresponding β’s can become
wildly variable. A very large positive β on one variable can be can-
celed by a similarly large negative β on another predictor correlated
to the first one. A size constraint imposed by t, fixes this issue.

Before fitting the ridge regression model, we need to aware that
scaling the predictors is often needed. In least squares estimation,
scaling/standardizing a predictor does not not change the overall
quality of the fit (e.g., R2, MSE etc). If we multiply a predictor by a
constant c, then the resulting least square coefficient estimate will get
multiplied by 1/c. In other words, using least squares, the quantity
Xj β̂ j will remain the same no matter how we scale the j-th predic-
tor.31 31 This is the reason we call least

squares estimators scale equivariant.

mod1 <- lm(medv ~ lstat, data = Boston)

mod2 <- lm(medv ~ I(5*lstat), data = Boston)

# Coefficients

cbind(original = mod1$coefficients[2],

scaled = mod2$coefficients[2])

## original scaled

## lstat -0.9500494 -0.1900099

In contrast, ridge regression estimates can change substantially de-
pending on scaling of the predictors. In fact, ridge regression estima-
tors β̂

ridge
j will depend on the scaling of the j-th predictor, the value

of the tuning parameter λ, and the scaling of the other predictors as
well. Therefore it is best to apply ridge regression after we have stan-
dardized each of the predictors. This way, each predictor has variance 1,
and the final fit will not depend on the scale on which the predictors
are measured.

In addition, the ridge formulation does not penalize the intercept
β0. This is due to the fact that the ridge estimates depend on the cen-
ter chosen for the responses. Specifically, in least squares regression,
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if we add a constant c to each of the responses Yi, the resulting pre-
dictions also shift by the same amount c. But this does not happen
in ridge regression if we penalize the intercept – therefore we do not
penalize β0.

It can be shown that, if we center each covariate, that is, we use
Xij − X̄j as predictors, then the estimator of the intercept is simply
the sample mean of Y: β̂0 = Ȳ. The remaining coefficients, β1, . . . , βp,
are estimated by a ridge regression without intercept.

For simplicity, we will henceforth assume that the model matrix X does
not include intercept, and thus has only p columns, not p + 1. We will
also assume that mean of each column is zero.

Under this assumption, we still have the same form of the solution:
(β̂1, . . . , β̂p) = (XTX + λI)−1XTY. Furthermore, if we standardize
predictors beforehand and if they are orthogonal to each other, it can
be shown that β̂

ridge
j = β̂/(1 + λ).

In R, we can use the glmnet() function in the glmnet library.32 32 See ?glmnet for more details.

Let us use the Boston data for example. Note the usage of alpha =

0 (ensures we are fitting ridge regression as glmnet() can fit other
models like LASSO and elastic net as well).

library(glmnet)

## model matrix (standardized) and response

medv <- Boston$medv

model_mat <- Boston[ , -13]

model_mat <- scale(model_mat)

model_mat <- as.matrix(model_mat)

## Fit ridge regression for a grid of lambda

grid <- 10ˆseq(-2, 10, length = 100)

boston_ridge <- glmnet(y = medv, x = model_mat,

alpha = 0,

lambda = grid)

betahat <- coef(boston_ridge)

dim(betahat)

## [1] 13 100

We constructed the model matrix by excluding intercept since it
will be automatically included by glmnet() as well as excluding medv.
Here we have used a custom grid of λ values.33 For each value of 33 glmnet() has a default way to set λ

values as well if we do not specify λ
manually.

λ, the output betahat contains the corresponding estimates of the
regression coefficients. Figure 24 shows the estimated coefficients for
different values of λ.
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How do we choose the “optimal” value of λ? We again come back
to bias-variance trade-off. Note that the penalty parameter λ effectively
controls the model complexity: small values of λ results in close
to least squares fit (lower bias, higher variance), while large values
of λ results in almost an intercept-only model (higher bias, lower
variance). Figure 25 shows bias-variance trade-off of ridge regression.
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Figure 25: Bias-variance trade-off of
ridge regression. Figure taken from
extitIntroduction to Statistical Learning.
Displayed are squared bias (black),
variance (green), and test mean squared
error (purple) for the ridge regression
predictions on a simulated data set. The
horizontal dashed lines indicate the
minimum possible MSE.

Ideally, we would like to select λ that minimizes test MSE. We can
use data splitting methods such as cross-validation (or holdout) to
do so. We choose a grid of candidate values of λ, and compute the
cross-validation (or holdout) error for each value. The optimal λ is
the one with minimum test error. Finally, we refit the model to the
full data using the optimal λ.

We can use glmnet.cv() function to perform cross-validation. By
default, glmnet.cv() uses 10-fold CV.34 34 See ?glmne.cv() for details. We can

use nfolds argument to specify number
of folds while using CV.

set.seed(1001)

grid <- 10ˆseq(-2, 10, length = 100)

cv_out <- cv.glmnet(x = model_mat, y = medv,

alpha = 0,

lambda = grid)

We can plot the results from CV process using the output of
cv.glmnet() output. Figure 26 shows the results.

# Plot cv results

plot(cv_out)
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Figure 26: Cross-validation results for
Boston data using ridge regression.

The “best” value of λ can chosen by minimizing the CV error. The
left vertical line in Figure 26 represents this value. From Figure 26,
we see that there are a range of λ values that give similar CV errors,
and the dip in CV errors is not very pronounced. This suggests that
we might just as well use least squares estimate in this case. Alter-
natively, we can also us the one standard error rule to choose λ: rather

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu



ST 563 linear regression 44

than choosing the λ that gives the minimum test MSE, we would
pick the largest λ (less model complexity) whose test MSE is within
one standard error of the minimum test MSE. The right vertical line
in Figure 26 represents this value. The two values λ are shown be-
low, along with the estimated coefficients as well as estimated least
squares coefficients for comparison.

## lambda with minimum CV error/1 - SE

bestlam <- data.frame(min = cv_out$lambda.min,

one_se = cv_out$lambda.1se)

bestlam

## min one_se

## 1 0.04037017 2.656088

## Refit ridge regression

# The cv_out object already has the full data fit

# for each lambda

ridge_min = predict(cv_out$glmnet.fit,

type = "coefficients",

s = bestlam$min)

ridge_1se = predict(cv_out$glmnet.fit,

type = "coefficients",

s = bestlam$one_se)

# Least squares

ols <- coef(lm(medv ~ model_mat))

betahat <- cbind(ridge_min, ridge_1se, ols)

colnames(betahat) <- c("min", "1se", "ols")

betahat

## 13 x 3 sparse Matrix of class "dgCMatrix"

## min 1se ols

## (Intercept) 22.53280632 22.5328063 22.53280632

## crim -1.02358656 -0.7085400 -1.04412968

## zn 1.06108439 0.5188476 1.09530317

## indus 0.03927427 -0.4800640 0.09239314

## chas 0.72873407 0.7558299 0.72134140

## nox -2.10742277 -0.8332851 -2.17363599

## rm 2.59148348 2.6550878 2.57025715

## age 0.08566619 -0.1792700 0.10163739

## dis -3.07829358 -1.3983445 -3.13909506

## rad 2.35789785 0.3916933 2.51992023

## tax -1.98858081 -0.6041403 -2.13738455

## ptratio -2.01044117 -1.5536893 -2.02970765

## lstat -3.91107337 -2.8416725 -3.94200236
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## norm of betahat

sqrt( colSums(betahatˆ2) )

## min 1se ols

## 23.66276 23.02258 23.71326
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Figure 27: Predictors arranged by
absolute values of their estimated
coefficients using 1-SE rule.

In general, when the true relationship between predictors and
response is linear, least squares estimates will have low bias but can
have high variance, especially when p is close to n. When p > n, least
squares estimates are not unique. In contrast, ridge regression will
still perform well by trading off a small increase in bias for a large
decrease in variance. Thus, ridge regression works best in situations
where the least squares estimates have high variance.

A major disadvantage of ridge regression is that it does not ex-
clude any variables from the final fitted model, that is, it always
produces non-zero estimates of the regression coefficients. Ridge
regression will not set any coefficients to exactly zero for any finite
value of λ. Thus ridge regression can not be considered as a variable
selection method. This is not a problem for prediction, but interpret-
ing of a model fit with many small but non-zero coefficients can be
difficult.

Lasso regression

The lasso regression is another shrinkage method like ridge regres-
sion, but LASSO uses a penalty term involving sum of the absolute
values of the regression coefficients, instead of sum of their squares.
In particular, LASSO estimates of β j are obtained by minimizing

∑
i
(Yi − β0 − Xi1β1 − . . .− Xipβp)

2 + λ
p

∑
j=1
|β j|,

for λ ≥ 0. Due to the L1 penalty term, there is no closed form solu-
tion to the lasso problem.35 An equivalent way to write the LASSO 35 Computing the lasso solution is a

quadratic programming problem. Efficient
algorithms are available for computing
the entire path of solutions as λ is
varied. These algorithms have the
same computational cost as for ridge
regression. Interested readers should
see Elements of Statistical Learning for
details.

problem is in the form of a constrained minimization problem,

minimize ∑
i
(Yi − β0 − Xi1β1 − . . .− Xipβp)

2

subject to the constraint
p

∑
j=1
|β j| ≤ t,

for some t > 0.
Much like ridge regression, lasso also shrinks the regression co-

efficients towards zero. However, due to the L1 penalty term ∑j |β j|,
some of the coefficients will be shrunk exactly to zero. It is easier
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to see if we have standardized the predictors, and if they are or-
thogonal to each other. In that case, the explicit lasso solution is
β̂lasso

j = sign(β̂ j)(|β̂ j| − λ)+. Thus lasso does perform variable selec-
tion. As a result, models generated from the lasso are generally much
easier to interpret than those produced by ridge regression. In other
words, lasso generates sparse models – some coefficients are estimated
to be exactly zero.

From the point of view of the constrained formulation, for large
values of t, we will effectively get the least squares estimates. Specif-
ically, it can be shown that if t is chosen larger that t0 = ∑

p
j=1 |β̂ j|,

then lasso estimates are identical to least squares estimates. On the
other hand, if we chose t = t0/2, then the least squares estimates
are shrunk, on average, by about 50%. Figure 28 shows the reason
some lasso estimates are exactly set to zero while ridge estimates
are not. Here β̂ represents least squares solution while while the
blue diamond and circle represent the lasso and ridge regression
constraints. For large values of t, the constraint region will contain
β̂ and thus both ridge and lasso estimates will be identical to least
squares (equivalently choosing λ = 0). For smaller values of t, the
least squares estimate may lie outside the constraint region, like we
see in Figure 28.

Figure 28: Contours of the error and
constraint functions for the lasso (left)
and ridge regression (right). The solid
blue areas are the constraint regions for
lasso and ridge, while the red ellipses
are the contours of the RSS. Figure
taken from Introduction to Statistical
Learning.

The ridge and lasso estimates are the points where the contours
(ellipses) of the RSS intersect with the corresponding constraint re-
gion. Since the constraint region of ridge regression is circular with
no sharp points, this intersection will not generally occur on an axis.
Thus ridge regression coefficient estimates will be non-zero. On the
other hand, the lasso constraint region has corners at each of the
axes. So the ellipse will often intersect the constraint region at an
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axis. When this occurs, one of the coefficients will equal zero. In
higher dimensions, many of the coefficient estimates may equal zero
simultaneously. In Figure 28, we have β1 = 0.

In R, we can use glmnet() with argument alpha=1 to fit lasso re-
gression. The code presented in the ridge regression section will
work here with only change being alpha=1. The lasso fit for Boston
data is done below. Figure 29 shows the estimated regression coeffi-
cients as λ changes. The left extreme of the plot corresponds to least
squares fit (λ = 0).
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Figure 29: Lasso regression coefficients
for different values of lambda (log10

scale) for Boston data.

library(glmnet)

## model matrix (standardized) and response

medv <- Boston$medv

model_mat <- Boston[ , -13]

model_mat <- scale(model_mat)

model_mat <- as.matrix(model_mat)

## Fit lasso regression for a grid of lambda

grid <- 10ˆseq(-3, 7, length = 100)

boston_lasso <- glmnet(x = model_mat, y = medv,

alpha = 1,

lambda = grid)

beta_hat <- coef(boston_lasso)

dim(beta_hat)

## [1] 13 100

Like ridge regression, we need to carefully select λ. We can use
cross-validation (or holdout) methods to do so, as before.

## Lasso cross-validation

set.seed(1001)

grid <- 10ˆseq(-3, 7, length = 100)

cv_out <- cv.glmnet(x = model_mat, y = medv,

alpha = 1,

lambda = grid)

# Plot cv results

plot(cv_out)
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Figure 30: Cross-validation results for
Boston data using lasso regression.

Figure 30 shows the results of selection of λ using 10-fold cross-
validation. The λ values with minimum CV error and chosen by the
one standard rule are shown below, along with the corresponding
coefficient estimates.
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## lambda with minimum CV error/1 - SE

bestlam <- data.frame(min = cv_out$lambda.min,

one_se = cv_out$lambda.1se)

bestlam

## min one_se

## 1 0.01629751 0.2656088
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Figure 31: Predictors arranged by
absolute values of their estimated
coefficients using 1-SE rule from a lasso
fit.

## ## Refit lasso regression

# The cv_out object already has the full data fit

# for each lambda

lasso_min = predict(cv_out$glmnet.fit,

type = "coefficients",

s = bestlam$min)

lasso_1se = predict(cv_out$glmnet.fit,

type = "coefficients",

s = bestlam$one_se)

# Least squares

ols <- coef(lm(medv ~ model_mat))

betahat_lasso <- cbind(lasso_min,

lasso_1se,

ols)

colnames(betahat_lasso) <- c("min", "1se", "ols")

betahat_lasso

## 13 x 3 sparse Matrix of class "dgCMatrix"

## min 1se ols

## (Intercept) 22.53280632 22.53280632 22.53280632

## crim -0.99497662 -0.40962916 -1.04412968

## zn 1.01701543 0.16905691 1.09530317

## indus . . 0.09239314

## chas 0.72276924 0.59654483 0.72134140

## nox -2.04720216 -0.98224770 -2.17363599

## rm 2.60394572 2.90572805 2.57025715

## age 0.03024013 . 0.10163739

## dis -3.05650182 -1.33624538 -3.13909506

## rad 2.24135435 . 2.51992023

## tax -1.87984102 -0.02201344 -2.13738455

## ptratio -1.99776592 -1.78956364 -2.02970765

## lstat -3.91044836 -3.84867031 -3.94200236

Notice that the coefficient of indus is exactly set to zero, and is thus
excluded from the final model, when we choose λ by minimizing CV
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error. The one standard error rule gives a much larger λ, and thus a
sparser fit, excluding indus, age and rad from the final model.

Elastic net

A generalization of lasso and ridge is elastic net,36 which minimizes 36 Zou H, Hastie T (2005). Regular-
ization and Variable Selection via the
Elastic Net. Journal of the Royal Statisti-
cal Society, Series B, 67(2), 301–320.∑

i
(Yi − β0 − Xi1β1 − . . .− Xipβp)

2 + λ((1− α)
p

∑
j=1

β2
j + α

p

∑
j=1
|β j|),

for λ ≥ 0 and α ∈ [0, 1]. Note that lasso and ridge regressions
are special cases of elastic net for α = 1 and α = 0, respectively.37 37 This is the formulation glmnet() uses

with the alpha argument.Zhou and Hastie (2005) suggests that elastic net deals with correlated
predictors more effectively than lasso or ridge. The ridge penalty
tends to shrink coefficients of correlated variables towards each other,
while lasso tends to pick one predictor to be kept in the model while
ignoring the rest.38 The elastic net penalty is a compromise between 38 See Elements of Statistical Learning for

more discussion.these two phenomena. The first term the the penalty encourages the
correlated features to be averaged, while the second penalty term
encourages sparsity in the estimated coefficients of the averaged
features.

Elastic net often finds application in genomics (high-dimensional
problems) where p > n, and predictors (genes) are often have high
correlation among them.

As usual, we need to tune both λ and α in this case. We can use
glmnet() to fit elastic net as well.

Other variable selection methods

There are many other variable selection models in literature, includ-
ing several variations of lasso, such as

• adaptive lasso:39 for estimation with less bias than ordinary lasso. It 39 Zou, H (2012). The Adaptive Lasso
and Its Oracle Properties, JASA, 101,
1418 - 1429

requires an initial estimate of the coefficients. The penalty term for
each coefficient is then inversely weighted by the corresponding
initial estimates. We can use the penalty.factor argument in glmnet()
to do so.

• group lasso:40 for variable selection in groups of variables. For 40 Yuan, M. & Lin, Y. (2007), Model
selection and estimation in regression
with grouped variables, Journal of the
Royal Statistical Society, Series B 68(1),
49 - 67

example, we might have a categorical variable with more than
two levels. In variable selection, we might exclude/include all the
dummy variable together. We can use R package grpreg for fitting
group lasso.

• fused lasso:41 does variable selection when the predictors have a 41 Tibshirani, R., Saunders, M., Ros-
set, S., Zhu, J. and Knight, K. (2005),
“Sparsity and smoothness via the fused
lasso”, Journal of the Royal Statistics
Society: Series B 67(1), 91 - 108.

natural ordering. For example, the predictors can be genes ordered
by their chromosome location. Another example is when predictor
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is a function of time (functional data or time series). We can use
the genlasso package here.

• Smoothly clipped absolute deviations (SCAD)42 and Minimax concave 42 Fan J and Li R. (2001). Variable Selec-
tion via Nonconcave Penalized Likeli-
hood and its Oracle Properties. Journal
of American Statistical Association,
96:1348 - 1360.

penalty (MCP): produce sparse set of solution and approximately
unbiased coefficients for large coefficients. Both methods are avail-
able in the ncvreg package.

There are many other methods available in literature. Readers are
encouraged to explore according to their needs.

Dimension Reduction Methods

The variable selection and shrinkage methods discussed so far at-
tempts to reduce model variance in two ways: by reducing number
of variables in the model (subset selection, lasso) and by shrinking
regression coefficients toward zero (ridge, lasso). Another method
to control model variance is to transform the original predictors to
obtain new ones, and use them as covariates in the regression model.
Typically, the number of new variables are less than the number of
the original predictors. Thus these methods are called dimension re-
duction techniques.

Suppose our original predictors are Xi1, . . . , Xip. A typical dimen-
sion reduction method has two steps:

1. Create new predictors Zi1, . . . , ZiM by transforming/combining
the original predictors. Usually we choose M < p, and thus reduc-
ing the dimension of the problem.

2. Fit the regression model with the new M predictors:

Yi = θ0 + Zi1θ1 + . . . + ZiMθM + εi.

Depending on how we construct the new predictors gives rise to
different dimension reduction techniques.

In this section, we will discuss dimension reduction in the con-
text of building linear regression models. We will discuss dimension
reduction methods as a part of unsupervised learning in a later chap-
ter.

Principal Components Regression

Principal components regression uses Principal Components Analysis
(PCA) to derive new features from the original predictors. For now,
we will only briefly discuss PCA – it will be covered in a future chap-
ter.
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For simplicity of the following discussion, we will henceforth assume
that each predictor variable has been centered.

Overview of PCA
The objective of PCA is to condense the information that is present

in the original set of variables via linear combinations of the variables
while losing as little information as possible. Suppose we have a p
predictors Xi = (Xi1, . . . Xip)

T . The main goal of PCA is to identify
linear combinations of the form

Zim = am1Xi1 + . . . + ampXip, m = 1, 2, . . . , M,

that explain most of the variability in the data.43 Typically we choose 43 Mathematically, we need to normalize
the weights, that is, we ensure that
a2

m1 + . . . + a2
mp = 1.

M < p, and the new variables, Zim, are ordered according to their
importance. Specifically, Zi1 is designed to capture the most variabil-
ity in the original variables by any linear combination – this is called
the first principal component (PC). Then Zi2, the second PC, captures the
most of the remaining variability while being uncorrelated to Zi1. We
continue until we have the p-th PC Zip. In the end, we hope that the
first few PCs, Zi1, . . . , ZiM, will capture most of the variability in the
original predictors.

Principal component directions and Loadings

The vectors am = (am1, . . . , amp)T are called the principal com-
ponent (PC) directions. The individual components (the weights
am1, . . . , amp) of each PC direction are called loadings. The load-
ings tell us how the original variables are weighted to get the
new variables.

Let us look at the Boston data for a demonstration. In R we can
use the function prcomp() to perform PCA. Here we can approximate
total variation in the original data as the sum of the variances of each
predictors.

# Extract only predictors and center them

X <- scale(Boston[, -13],

center = TRUE, scale = FALSE)

dim(X)

## [1] 506 12

# Total variation

TV = sum(apply(X, 2, var))

TV

## [1] 29998.61
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Before proceeding, let us check variances of individual predictors.

apply(X, 2, var)

## crim zn indus chas nox rm

## 7.398658e+01 5.439368e+02 4.706444e+01 6.451297e-02 1.342764e-02 4.936709e-01

## age dis rad tax ptratio lstat

## 7.923584e+02 4.434015e+00 7.581637e+01 2.840476e+04 4.686989e+00 5.099476e+01

Here we see an obvious problem – the variables are not compara-
ble in terms of their variability. For example, the variable tax has a
variance 2.8404759× 104 while lstat has variance 50.9947595. So ma-
jority of the total variation is due to tax. In such a case of imbalance,
tax will overshadow all other variables. This may not be because tax

is the only important variable here, but it is an issue of measurement
unit/scale. For example, if we multiply lstat by 100, it does not
make lstat any more important than it originally was, but its vari-
ance will be inflated by a factor of 10, 000 making lstat dominant
over the rest of the predictors. To avoid this issue, we will standard-
ize each predictor. 44 Since now every predictor will have variance 44 This is my general recommendation

when performing PCA.one, total variation is simply the number of predictor in the data.

# Standardized predictors

Xstd <- scale(X, center = TRUE, scale = TRUE)

# TV

TV = ncol(Xstd)

TV

## [1] 12

Now we perform PCA of the predictors. After performing PCA,
we will have 12 PCs (linear combinations of the original predictors
in X). We can access the PCs in the $x component from the prcomp()

output.

# PCA

pc_out <- prcomp(Xstd)

names(pc_out)

## [1] "sdev" "rotation" "center" "scale" "x"

# PCs

Z <- pc_out$x

dim(Z)

## [1] 506 12
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Each column of Z contain one PC – the first column if for PC1, the
second for PC2 and so on. First we note that the combined variation
in Z is exactly the same as total variation in the original predictors.

sum(apply(Z, 2, var))

## [1] 12

Thus the ratio of variance of the 1st PC (first column of Z) to the total
variation quantifies how much of the total variation is captured by
the 1st PC. We can do similar calculations for each of the PCs.

Proportion of TV captured by j-th PC =
var(Zj)

TV
.

# Proportion of TV captured by PC1

var(Z[,1])/TV

## [1] 0.4922571

The PCs are ordered by their variance. By construction, PCs are
uncorrelated. So total variation captured by the first few PCs is sim-
ply the sum of their individual variances. We can define proportion
of variation similarly.

Proportion of TV captured by first j PCs =
var(Z1) + . . . + var(Zj)

TV
.

# Cumulative proportion of TV captured by successive PCS

cumsum(apply(Z, 2, var)) / TV

## PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

## 0.4922571 0.6089290 0.7073204 0.7785239 0.8453863 0.8900683 0.9230771 0.9462417

## PC9 PC10 PC11 PC12

## 0.9650053 0.9805225 0.9947065 1.0000000

In the example above we can see that the first three PCs together
explain 70.732 percent of total variation.

We can use the summary() function to see the perfromance of PCA.

summary(pc_out)

## Importance of components:

## PC1 PC2 PC3 PC4 PC5 PC6 PC7

## Standard deviation 2.4304 1.1832 1.08660 0.9244 0.89574 0.73225 0.62937

## Proportion of Variance 0.4923 0.1167 0.09839 0.0712 0.06686 0.04468 0.03301

## Cumulative Proportion 0.4923 0.6089 0.70732 0.7785 0.84539 0.89007 0.92308

## PC8 PC9 PC10 PC11 PC12

## Standard deviation 0.52723 0.47451 0.43152 0.41256 0.25204

## Proportion of Variance 0.02316 0.01876 0.01552 0.01418 0.00529

## Cumulative Proportion 0.94624 0.96501 0.98052 0.99471 1.00000
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Note that we need all the 12 PCs to capture 100% of TV, but doing
so will not perform dimension reduction. Thus we will have discard
the last few PCs and in the process sacrifice some of the variation
in the original data. For example, if we are willing to sacrifice 15%
of TV (i.e., capture 85% of TV), we will only need 6 PCs. In principal
component regression, we will treat the number of PCs to retain as a tuning
parameter.

Let us not briefly look at the loadings for the PCs.45 45 We will discuss more about interpret-
ing the loadings in a later chapter.

loadings <- pc_out$rotation

# PC1 loadings

round(loadings[,1], 2)

## crim zn indus chas nox rm age dis rad tax

## 0.25 -0.27 0.35 0.01 0.35 -0.20 0.32 -0.33 0.32 0.34

## ptratio lstat

## 0.21 0.32

It seems PC1 has two groups of variables, (zn, rm and dis) vs. the rest
of the variables excluding chas, with loadings with opposite signs
but roughly similar magnitude. Investigation of correlation plot (Fig-
ure 32) of the predictors gives insight about PC1 loadings. We can see
there are two groups of variables that have positive correlation within
each group, but have negative correlation between the groups. PC1

essentially quantifies this pattern.
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Figure 32: Correlation plot of Boston
data.

From a geometric point of view, PCA attempts to find the directions
along which most of the variability is present. Let us consider the simple
case with number of variables p = 2. Thus for PC1 we need to deter-
mine loading a11, a12 so that variance of a11X1 + a12X2 is maximized.
The condition on the loadings is

a2
11 + a2

12 = 1.

This is the equation of a circle, centered at zero, with radius one. So
we only need to look at points (a11, a12)

T that are on the perimeter of
the circle. This is what we mean by direction; see Figure 33.
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Figure 33: First PC direction.

Thus, given a data scatterplot, the 1st PC points to the direction
along with most of the variation lies. In Figure 34, the grey points
represent a data scatter. PCA first places a circle of unit length at the
center of the data (the black circle in the plot) and finds the direction
with the most variation (the red arrow). The direction orthogonal to
PC1 containing the second largest amount of variation is PC2 (the
blue arrow).

Let us now consider the case with three variables, p = 3. In this
case, the loadings are a11, a12, a13 and the constraint becomes

a2
11 + a2

12 + a2
13 = 1.
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Figure 34: Geometry of PCA in two and
three dimensions (left and right panels,
respectively).This is the equation of a sphere, centered at zero, with radius one.

Thus we only need to look at points (a11, a12, a13)
T that are on the

surface of the sphere.
Now consider a data scatter in three dimensions (gray points in

Figure 34, right panel). We first place a sphere of unit radius at the
center of the data (the light-blue sphere). Then the first PC points to
the direction (represented by the vector on the surface of the sphere)
with the most variation (the red arrow). The second PC is the direc-
tion orthogonal to the first PC containing the second largest amount
of variation. The third PC is the direction orthogonal to both the first
and second PCs.

Note that any direction represented by the vector a is also rep-
resented by −a (just like “x-axis” corresponds to both positive and
negative directions). Thus if a is a PC then so is −a. In other words,
if Z1 = a11X1 + . . . + a1pXp is a PC, then so is Z′1 = −a11X1 − . . .−
a1pXp. Thus it is not advisable to interpret the loadings as they are
(since the sign is unidentifiable) – we need to interpret them relative
to other loadings. For example, we can say crim has opposite rela-
tionship to PC1 compared to zn.

Performing Principal Components Regression (PCR)
Now that we have constructed the PCs, we can choose the first

M PCs, Zi1, . . . , ZiM, and build a regression model with the PCs as
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predictors. Here we are assuming that the direction that the original
predictors, X1, . . . , Xp show most variation are in fact the directions
associated with the response.46 46 There is no assurance such an as-

sumption actually holds.If the assumption above holds true, then using PCR with Zi1, . . . , ZiM

as predictors will give a better result than using all the p original pre-
dictors. PCR may also help mitigating overfitting.

The number of retained PCs, M, is considered to be a tuning pa-
rameter and can be chosen by cross-validation (or other data splitting
methods). Once the optimal M is chosen, we fit the model to the full
data with the chosen M to obtain the final model.

In R, we can use the pcr() function in the pls package.47 Note the 47 Other packages such as caret can
also so this.usage of arguments center = TRUE and scale = TRUE.

library(pls)

set.seed(1001)

pcr_lm <- pcr(medv ~ .,

data = Boston,

center = TRUE, scale = TRUE,

validation = "CV")

When using pcr(), we do not need to explicitly obtain the PCs –
it is automatically done by pcr(). Here we use the original Boston
data, and use the scale and center arguments to standardize. The
validation argument specifies the method to choose M.

summary(pcr_lm)

## Data: X dimension: 506 12

## Y dimension: 506 1

## Fit method: svdpc

## Number of components considered: 12

##

## VALIDATION: RMSEP

## Cross-validated using 10 random segments.

## (Intercept) 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps

## CV 9.206 7.322 6.562 5.566 5.363 5.208 5.224

## adjCV 9.206 7.321 6.556 5.562 5.353 5.201 5.217

## 7 comps 8 comps 9 comps 10 comps 11 comps 12 comps

## CV 5.197 5.199 5.199 5.179 4.996 4.930

## adjCV 5.190 5.193 5.190 5.171 4.986 4.919

##

## TRAINING: % variance explained

## 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps 8 comps

## X 49.23 60.89 70.73 77.85 84.54 89.01 92.31 94.62

## medv 36.96 50.50 64.15 67.32 69.04 69.06 69.58 69.61
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## 9 comps 10 comps 11 comps 12 comps

## X 96.50 98.05 99.47 100.00

## medv 70.17 70.53 72.59 73.43

The cross-validation results suggest that the lowest RMSE corre-
sponds to using all 12 PCs. In other words, in this example, PCR did
not provide any benefit.

5

6

7

3 6 9

ncp

R
M

S
E

Figure 35: Cross-validation error with
one SE error bars.

Let us now investigate the one standard error rule in this situation.
Specifically, we can choose a smaller model whose test error is within
one standard error of the minimum test error. For computational
ease, let us refit PCR and perform cross-validation using caret.

set.seed(1001)

model <- train(medv ~ .,

data = Boston,

method = "pcr",

trControl = trainControl("cv", number = 10),

tuneLength = 12,

preProcess = c("center", "scale")

)

model$results

## ncomp RMSE Rsquared MAE RMSESD RsquaredSD MAESD

## 1 1 7.188782 0.3962757 5.026684 1.3771210 0.13809005 0.8096569

## 2 2 6.414383 0.5148207 4.640147 1.1904223 0.10504920 0.6549203

## 3 3 5.455026 0.6492901 3.856546 1.1050287 0.08938897 0.5756135

## 4 4 5.177018 0.6829000 3.617265 1.2288044 0.11653420 0.6809517

## 5 5 5.084529 0.6955340 3.494738 1.1440713 0.10635726 0.6327532

## 6 6 5.100443 0.6938870 3.503544 1.1420132 0.10620278 0.6499091

## 7 7 5.088361 0.6962521 3.515851 1.0707799 0.09757015 0.5615676

## 8 8 5.103823 0.6946868 3.521178 1.0768574 0.09828127 0.5693120

## 9 9 5.163096 0.6888286 3.599038 1.0223223 0.09285216 0.5486695

## 10 10 5.130536 0.6925015 3.560661 1.0438463 0.09533109 0.5536748

## 11 11 4.944944 0.7164652 3.530450 0.8887682 0.07539532 0.4800970

Since we are using 10-fold CV, the standard error of the estimate
of the test error (average of the 10 test errors) is simply the standard
deviation divided by square-root of number of folds.48 48 Recall, for a random sample

X1, . . . , Xn, standard error of sample
mean is

SE(X̄) =
sample SD of X values√

sample size
.

SE <- model$results$RMSESD/sqrt(10)

round(SE, 2)

## [1] 0.44 0.38 0.35 0.39 0.36 0.36 0.34 0.34 0.32 0.33 0.28
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Thus we can plot the estimated test errors and error bars repre-
senting plus/minus one standard error, see Figure 35.

Now we see that a model with 4 PCs can be chosen with the one
standard error rule. From the PCA output shown earlier, first 4 PCs
explain 77.85 percent of total variation in the original data. Finally,
we fit the model chosen number of PCs.

pcr_final <- pcr(medv ~ .,

data = Boston,

center = TRUE, scale = TRUE,

ncomp = 4, validation = "none")

summary(pcr_final)

## Data: X dimension: 506 12

## Y dimension: 506 1

## Fit method: svdpc

## Number of components considered: 4

## TRAINING: % variance explained

## 1 comps 2 comps 3 comps 4 comps

## X 49.23 60.89 70.73 77.85

## medv 36.96 50.50 64.15 67.32

While PCR performs dimension reduction, it does not perform
variable selection since each PC can be a combination of all the origi-
nal variables. For example, in our final model with 4 leading PCs, the
model is

Yi = θ0 +
4

∑
m=1

Zimθm + εi

Since Zim = am1Xi1 + . . . + ampXip, we can write the model above in
terms of the original variables as

Yi = θ0 + [
4

∑
m=1

am1θm]Xi1 + . . . + [
4

∑
m=1

ampθm]Xip + εi.

Therefore, PCR includes all the original variables in the final model.
In our example, the coefficients for the standardized original coeffi-
cients can be obtained follows.

coef(pcr_final)

## , , 4 comps

##

## medv

## crim -0.3678349

## zn 0.6767729
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## indus -0.6154494

## chas 0.6128129

## nox 0.2643513

## rm 3.6999912

## age 0.1472266

## dis -0.5926663

## rad -0.2078194

## tax -0.4315474

## ptratio -2.3749697

## lstat -2.2448475

Note that none of the original variables has zero coefficients.

Partial Least Squares

In PCR, we are assuming that the direction that the original predic-
tors, X1, . . . , Xp show most variation are in fact the directions associ-
ated with the response. Such an assumption need to hold true since
the PC directions are computed in an unsupervised way.

In contrast, partial least squares (PLS)49 is a supervised approach, 49 Originally, Herman Wold devel-
oped the nonlinear iterative partial
least squares (NIPALS) algorithm
(Wold 1966, 1982) algorithm for non-
linear models. Later, Wold et al. (1983)
adapted the NIPALS method for regres-
sion setting with correlated predictors –
this adaptation was named PLS.

that is, PLS determines the linear combinations of the original pre-
dictors by making use of the response. Roughly speaking, the PLS
approach attempts to find directions that help explain both the re-
sponse and the predictors.

Recall, we are still operating under the assumption that the predic-
tors have been standardized. PLS begins by performing a simple linear
regression of Yi on the j-th original predictor, Xij, for each j = 1, . . . , p.
The resulting estimates of slopes are denoted as a11, . . . , a1p, respec-
tively. Then the first PLS component is constructed as

Zi1 = a11Xi1 + . . . + a1pXip.

Thus the first PLS component places the highest weight on the vari-
ables that are most strongly related to the response.

To construct the second PLS component, we regress each pre-
dictor variable on the first PLS component, and take the residu-
als. We can view these residuals as the remaining information that
has not been captured by the first PLS component. The the sec-
ond PLS component is computed in the same manner as before:
Zi2 = a21Xi1 + . . . + a2pXip, where a2j if estimated regression coef-
ficient of Xij from the simple linear regression of the residuals (ob-
tained above) on Xij. We continue this process until we have all the
p PLS components. As in PCR, we take the leading M PLS compo-
nents. A multiple linear regression is then fitted with Y as response
and the M PLS components as predictors.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu



ST 563 linear regression 60

We can use the plsr() function in pls package, or use caret with
mehod = "pls". The number of PLS components, M can be chosen
using data splitting methods, such as CV.

set.seed(1001)

model <- train(medv ~ .,

data = Boston,

preProcess = c("center", "scale"),

method = "pls",

trControl = trainControl("cv", number = 10),

tuneLength = 12

)

model

## Partial Least Squares

##

## 506 samples

## 12 predictor

##

## Pre-processing: centered (12), scaled (12)

## Resampling: Cross-Validated (10 fold)

## Summary of sample sizes: 455, 455, 454, 456, 456, 456, ...

## Resampling results across tuning parameters:

##

## ncomp RMSE Rsquared MAE

## 1 6.416461 0.5187161 4.466546

## 2 5.037699 0.7007280 3.491181

## 3 4.976713 0.7103322 3.445529

## 4 4.953041 0.7159024 3.511223

## 5 4.912530 0.7206881 3.512850

## 6 4.877108 0.7241979 3.490279

## 7 4.868411 0.7255914 3.485247

## 8 4.859391 0.7262403 3.478366

## 9 4.859906 0.7262037 3.476025

## 10 4.862116 0.7260036 3.477238

## 11 4.861939 0.7260194 3.477140

##

## RMSE was used to select the optimal model using the smallest value.

## The final value used for the model was ncomp = 8.
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E

Figure 36: Cross-validation error with
one SE error bars.

We can plot the estimated test errors and error bars representing
plus/minus one standard error as we did in PCR – see Figure 36.
Using minimum test error, we can use 8 PLS components. Using one
standard error rule, it seems two PLS components are sufficient.

We can finally fit the PLS regression model on the full data using
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the chosen number of PLS components. Using 8 PLS components, the
final fit is shown below.

pls_final <- plsr(medv ~ .,

data = Boston,

center = TRUE, scale = TRUE,

ncomp = 8)

summary(pls_final)

## Data: X dimension: 506 12

## Y dimension: 506 1

## Fit method: kernelpls

## Number of components considered: 8

## TRAINING: % variance explained

## 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps 8 comps

## X 47.81 59.71 67.51 72.82 79.09 82.22 86.00 89.95

## medv 49.84 69.90 71.58 72.75 73.15 73.30 73.38 73.42

We can extract the values of PLS components (scores), that is, Zim

values using the scores() function. The weights (loadings) of the
original variables for each PLS components can be extracted using
loadings() function.

pls_scores <- scores(pls_final)

load <- loadings(pls_final)

It can be shown that PLS computes directions that have high vari-
ance and have high correlation with the response. In contrast, PCA
seeks directions only with high variance.50 51 In practice PLS often 50 Stone M, Brooks R (1990). Continuum

Regression: Cross-validated Sequen-
tially Constructed Prediction Embracing
Ordinary Least Squares, Partial Least
Squares, and Principal Component Re-
gression. Journal of the Royal Statistical
Society, Series B, 52, 237 - 269.
51 Frank, I.E. and Friedman, J.H. (1993)
An Statistical View of Some Chemomet-
rics Regression Tools. Technometrics,
35, 109 - 135.

produces performance similar to ridge regression or PCR. While the
supervised dimension reduction of PLS can reduce bias, it also has
the potential to increase variance.

High-dimensional data

So far, all the methods we discussed assume that the number of pre-
dictors (p) is (much) less than the sample size (n). The performance
of these methods deteriorate as p gets closer or exceed n. Data sets
containing more features than observations (or sometimes number
of features slightly smaller than n) are often referred to as high-
dimensional. In many fields, such as genomics and bioinformatics,
such high-dimensional data are common. For example, in genomics
we measure single nucleotide polymorphisms (SNPs)52 and investigate 52 These are individual DNA mutations

that are relatively common in the
population

their association with an outcome of interest. Typically, the number
of SNPs are in hundred of thousands, but sample size is in hundreds.
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When we have p > n, usual least squares regression should not
be performed. This is because as p > n, the model matrix will not
have full column rank, and as such least squares does not provide
unique solutions. Furthermore, training set measures such as R2 and
RSE will keep getting better and better as we add more predictors
to the model regardless whether the predictors are actually associated with
the response. Suppose we have p predictors. When p + 1 ≥ n (or
p ≥ n if intercept is not in the model), least squares gives a perfect fit
with zero residuals (R2 = 1 and RSE = 0). However, such a model
will perform extremely poorly in a test set due to very high model
variance. Figure 37 further illustrates the risk of carelessly applying
least squares when the number of features is large.
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Figure 37: Risk of carelessly applying
least squares when the number of fea-
tures is high. Data were simulated with
n = 20 observations, and regression
was performed with between 1 and 20

features, each of which was completely
unrelated to the response.

In fact, the model evaluation approaches that do not require a test
set (AIC, BIC, adjusted R2), are also not appropriate for in the high-
dimensional setting due to instability of estimation of σ̂2 and RSS,
both of which will be zero when p + 1 ≥ n. Thus we need alternative
methods in this situation.

Regression in high-dimensions

We can still apply dimension reduction approaches such as forward
stepwise selection53, ridge regression, the lasso, and principal com- 53 Backward selection can not be used

here since we can not a fit the full
model with all the predictors.

ponents regression. These methods avoid overfitting data using a less
flexible model.

Figure 38 illustrates the performance of the lasso in a simple sim-
ulated example (figure taken from Introduction to Statistical Learn-
ing). The degrees of freedom used in the plot is simply the number of
non-zero coefficients in the lasso model. Large degrees of freedom
indicate a more flexible model. The sample size uses the simulation is
n = 100. It is evident that test error increases as the the number of predic-
tors increases, unless the additional features are truly associated with
the response. This phenomenon is called the curse of dimensionality.

In general, test MSE will decrease by adding predictors that are
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Figure 38: The lasso was performed
with n = 100 observations and three
values of p, the number of features.
Of the p features, 20 were associated
with the response. The boxplots show
the test MSEs that result using three
different values of the tuning parameter
λ. For ease of interpretation, rather than
reporting λ, the degrees of freedom are
reported; for the lasso this turns out
to be simply the number of estimated
non-zero coefficients. When p = 20,
the lowest test MSE was obtained with
the smallest amount of regularization.
When p = 50, the lowest test MSE
was achieved when there is a substan-
tial amount of regularization. When
p = 2000 the lasso performed poorly
regardless of the amount of regulariza-
tion, due to the fact that only 20 of the
2000 features truly are associated with
the outcome.

truly associated with the response. Adding noise predictors that are
not related to the response at all will lead to an increase of test MSE.
This is because adding such noise predictors increases dimensionality
of the problem and results in overfitting.

Interpreting Results in High Dimensions

Another issue in high-dimensional problem is multicollinearity, that
is, when one predictor can be expressed as a linear combination of
the others. When p + 1 ≥ n, the predictors will always have multi-
collinearrity – any predictor can be written as a linear combination of
the others. This implies that we can not identify the best coefficient
in the regression model. At most, we can hope to assign large regres-
sion coefficients to variables that are correlated with the variables
that truly are predictive of the outcome.

We should also be careful in reporting measures of model fit. We
quote the following paragraph from Chapter 6.4 of Introduction to
Statistical Learning.

We have seen that when p > n, it is easy to obtain a useless model that
has zero residuals. Therefore, one should never use sum of squared
errors, p-values, R2 statistics, or other traditional measures of model
fit on the training data as evidence of a good model fit in the high-
dimensional setting.

It is important to instead report results on an independent test set, or
cross-validation errors. For instance, the MSE or R2 on an independent
test set is a valid measure of model fit, but the MSE on the training set
certainly is not.
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