
Model Building and Data Splitting
Arnab Maity

NCSU Statistics ~ 5240 SAS Hall ~ amaity[at]ncsu.edu

Contents

Introduction 2

K-Nearest Neighbors Regression 3

Distance metric 4

The hyperparameter K 4

Regression model evaluation criterion 6

Bias-Variance decomposition 8

Data splitting 10

Holdout method 10

V-fold Cross-validation (V-fold CV) 17

Leave-One-Out Cross-Validation (LOOCV) 22

Bootstrapping 24

K-Nearest Neighbors Classification 29

Bayes classifier 29

Evaluating a classifier 30

Role of hyperparameter in classification 31

Building a classifier 32

Evaluating Predicted Classes 35

Evaluating predicted probabilities via ROC curves 38

Summary 40

ST 563 model building and data splitting 2

Introduction

In this chapter, we will go into details about training statistical learn-
ing models. In the process, we will learn about different methods
for splitting the data and resampling techniques, process of tuning
hyperparameters, tradeoff between bias and variance, and various
criteria for evaluating model performance.

The process of building a statistical model (or multiple models)
roughly has the following steps.

1. Split the data into a training set and a test set.

2. Tune hyperparameters (of all the models under consideration) using
the training set:

a. Split the training set further into two sets: one for fitting the
model (a new training set), and the other for evaluating model
performance (known as validation set or holdout set).

b. For each candidate value of hyperparameter(s), fit the model
using the new training set, and evaluate the fitted model using
the validation set using a metric of our choice.

c. Typically, we repeat stpes a. and b. few times so that we get
repeated measurements of model performance for each value of
hyperparameters.1 The final model performance is taken to be 1 Using a single validation set often

provides highly variable estimate of
model performance.

the average of these multiple measurements.

d. Choose the best value of hyperparameters by optimizing2 the 2 We would maximize or minimize the
model performance criterion depend-
ing on the situation. For example, we
would minimize criterion like “predic-
tion error”, but maximize “classification
accuracy”.

model perfromance measure obtained in step c.

3. Using the best value of hyperparameters, fit the model(s) on the
entire training set and estimate the model parameters. This is (are)
the final model(s) chosen in using the training set.

4. Use the test set to estimate the model performance of the final
model(s) from step 3.

5. Again, we may want to repeat steps 1. – 4. a few times to get a
reliable estimate of model performance of the final models. For
example, we can use cross-validation here to incorporate the un-
certainty due to hyperparameter tuning as well.

We should note that most model evaluation criteria focus on pre-
diction. Thus the steps describes above are geared towards building
of predictive models. After all, the model provided by the optimal
value of hyperparameter, while good for prediction, may not be eas-
ily interpreted or lend itself to inference.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 model building and data splitting 3

There are two points in the algorithm above that we may want to
perform repeatedly: these are the inner and outer loops.

Inner and outler loops

The tuning process (Step ‘2.‘) can repeated, that is, for each
candidate value of the hyperparameter(s), we may use multi-
ple splits of the training set rather than just one holdout set.
This is the inner loop.

The entire process can be performed repeatedly (Step ‘5.‘) to
get a better estimate of the test error. This is the outer loop.

Depending on the situation (sample size, computationa cost), we can
use any of the resampling and data splitting methods in each of the
loops.

K-Nearest Neighbors Regression

Before proceeding further, let us introduce one of the simplest non-
parametric regression methods – the K-Nearest Neighbors (KNN)
regression. We will develop our ideas further based on this regres-
sion technique. However, these ideas will be applicable in other cases
as well.

Assume that we have a regression model

Y = f (X) + ε,

where f (·) is an unknown function, and ε are zero mean random
errors with var(ε) = σ2, and independent of X. Suppose we have
training data (Yi, Xi), i = 1, . . . , n. Then, for any given value x0, KNN
regression estimates f (x0) as follows:

• Identify the K observations in the training data such the their X
values are “nearest” to x0.

• Estimate f (x0) by the average Y values of the points obtained in
the previous step.

Formally, suppose SK(x0) denotes the indices of the K points whose
X values are nearest to x0. Then we have

f̂ (x0) =
1
K ∑

i∈SK(x0)

Yi.

Note that the predictor X can be a scalar as well as a vector, as long
as there is a measure of “nearness” available.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 model building and data splitting 4

Distance metric

We determine K points nearest to x0 by computing a distance metric
between x0 and the X values of the training data, and taking the K
points with smallest distance measures.

The most common distance metric is the Euclidean distance: for
two vectors w = (w1, . . . , wp) and v = (v1, ldots, vp), the Euclidean
distance is

d(w, v) =

√√√√ p

∑
i=1

(wi − vi)2.

This is also known as the L2-norm of w− v, that is, ||w− v||2.
Another popular distance metric is the L1-norm, ||w− v||1, that is,

d(w, v) =
p

∑
i=1
|wi − vi|.

The L1-norm is used when we suspect the data might have outliers
or one coordinate may have large values compared to others. This is
also useful for binary predictors. The L1 distance is also known as
“taxicab” and “Manhattan” distance. The geometry of these distance
metrics are shown (simplified) in Figure 1.

1.0 1.2 1.4 1.6 1.8 2.0

3.
0

3.
2

3.
4

3.
6

3.
8

4.
0

u

v

Figure 1: L2-norm vs. L1-norm. Given
two points (black dots), the L2-norm
measures the distance of the straight
line joining them (dashed line). In con-
trast, L1-norm measures the distance of
the path that can only go parallel to the
x- and y-axes (dotted line).

There are other types of distance metrics in literature such as
Minkowski, Mahalanobis, Hamming, Cosine distances and so on.

The hyperparameter K

Let us consider the Boston dataset in the ISLR2 package. The data set
contains housing values of n = 506 suburbs of Boston. Suppose we
want to predict median value of owner occupied homes (in $1000’s,
medv variable) using the lower status of the population (percent,
lstat variable). A snapshot of the data is shown below with only the
two variables of interest. A plot of the data is shown in Figure 2.

10

20

30

40

50

0 10 20 30

Lower status of the population (percent)

M
ed

ia
n

va
lu

e
of

 o
w

ne
r

oc
cu

pi
ed

 h
om

es

Figure 2: Plot of median housing value
vs. percent of population with lower
status from Boston data.

A tibble: 6 x 2

medv lstat

<dbl> <dbl>

1 24 4.98

2 21.6 9.14

3 34.7 4.03

4 33.4 2.94

5 36.2 5.33

6 28.7 5.21

Let us see a KNN fit to the data, with K = 30.3 Here we are not 3 The value K = 30 is chosen arbitrarily
for demonstration purposes.training/testing the model yet – we are simply attempting to under-

stand the role of the hyperparameter K and its impact on the fitted
model. We can use the function knnreg() in the caret library.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 model building and data splitting 5

library(caret)

Fit KNN with K=30

knn_fit <- knnreg(medv ~ lstat,

data = Boston,

k = 30)

Create prediction grid

xgrid <- list(lstat = seq(2, 37, len=201))

Perform prediction

fitted_values <- predict(knn_fit, newdata = xgrid)

10 20 30

10
20

30
40

50

Lower status of the population (percent)

M
ed

ia
n

va
lu

e
of

 o
w

ne
r

oc
cu

pi
ed

 h
om

es

Figure 3: KNN fit to Boston data with
K=30.

After the fitting the regression, we plot the fitted function f̂ (·) on
a grid of 201 equally spaced values in [2, 37] – this interval roughly
covers the observed values for lstat. The fitted function is shown in
Figure 3.

Plot

plot(Boston$lstat, Boston$medv,

pch=19,

col = "darkgray",

xlab = "Lower status of the population (percent)",

ylab = "Median value of owner occupied homes")

lines(xgrid$lstat, fitted_values, lwd=2)

How should we choose K? To answer this question, we need to
investigate how the estimated function changes for different values of
K. We show three fitted functions for K = 1, 30, and 300 in Figure 4.

K = 1 K = 30 K = 300

0 10 20 30 0 10 20 30 0 10 20 30

10

20

30

40

50

Lower status of the population (percent)

M
ed

ia
n

va
lu

e
of

 o
w

ne
r

oc
cu

pi
ed

 h
om

es

Figure 4: Estimated functions form
Boston data example for different
values of K.

We note that for small value of K = 1, KNN produces extremely
rough estimate of f (·). We are almost interpolating the data – this is
an example of overfitting the data. While the model is most flexible,

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 model building and data splitting 6

and the estimated function does capture the shape of the data (per-
haps too much so), such a fit is undesirable as the estimate is much
too volatile.

In contrast, for large value K = 300 – this is 60% of our sample
size – the estimate is smooth, but does not capture the shape of the
data. Such a model is not flexible, and undesirable as it may produce
biased estimate of f (·), and inaccurate predictions.

For K = 30, it seems the model is flexible enough to capture
the overall shape of the data, but stable enough to not overfit the
data. Thus we need to discuss a criterion that evaluates the qual-
ity of model fit, and enables us to choose K (hyperparameters in a
regression model in general) properly.

Regression model evaluation criterion

We evaluate regression models based on how well they predict new
observations. Suppose we have new predictor value x0, and want to
predict the response Y corresponding to x0. The (squared) prediction
error is {Y − f̂ (x0)}2. However, we want the procedure to provide
good predictions across all possible values of Y when X = x0,4 so 4 Note that when X = x0, the response

Y is not just a single number – it is
a random variable. For example, if
we assume ε ∼ N(0, σ2), we have
Y|X = x0 ∼ N(f (x0), σ2). Thus, for
X = x0, the response could be any
realization from this distribution.

we might want to choose a model by minimizing expected prediction
error5 for X = x0,

5 Also known as generalization error
– see Elements of Statistical Learning by
Hastie, Tibshirani and Friedman, 2009,
for more details.

E[{Y− f̂ (x0)}2|X = x0].

This strategy works if we are only interested in the specific value
X = x0. In general, we want a procedure which can predict for all
possible values of X, not just one specific value. Thus the average
performance of the procedure can be measured by taking “average”
(expected value) of the previous expected prediction error over possi-
ble values of x0, that is,6 6 The equality in the equation fol-

lows by law of iterative expecta-
tion: for random variables W and Z,
E[E(W|Z)] = E(W).

E
(

E[{Y− f̂ (x0)}2|X = x0]
)
= E[{Y− f̂ (X)}2].

Unfortunately, the quantity above can not be directly computed
without knowing the probability distribution underlying the data
generating process, and hence needs to be estimated using a sample.
Suppose we have training set (Yi, Xi), i = 1, . . . , n, and a test set
(Yi, Xi), i = n + 1, . . . , n + m. Then, based on the test set, we can
estimate the quantity above as

1
m

n+m

∑
i=n+1

(Yi − f̂ (Xi))
2,

where we have replaced the expected value by a sample average, and
the average is taken over the test set. This quantity is called the test
Mean Squared Error (MSE). Similar quantity can be computed using
the training set as well.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 model building and data splitting 7

Mean Squared Error (MSE)

MSE: Given responses Yi and their predictions Ŷi = f̂ (Xi), the
Mean Squared Error is defined as

Averagei(Yi − Ŷi)
2

Training/Test MSE: If the MSE is computed on the training set
(the set used to fit the model), then the resulting quantity is
called Training MSE:

MSEtrain =
1
n

n

∑
i=1

(Yi − Ŷi)
2

MSE computed on an external test data (independent of the
training data) is called test MSE:

MSEtest =
1
m

n+m

∑
i=n+1

(Yi − Ŷi)
2

Using training MSE to evaluate model performance is often mis-
leading and results in overfitting the data. As an example, consider
using KNN regression with K = 1. The training MSE is zero (or close
to zero depending on how KNN handles ties in the X values).7 How- 7 Since for each Xi in the dataset, the

nearest point of Xi is itself. Thus the
prediction Ŷi = Yi , resulting in (near)
zero training MSE!

ever, 1-NN regression might perform very poorly in a test dataset.
Typically, minimizing the training MSE would result in choosing the
most flexible model, but having a low training MSE does not ensure that
the test MSE will be low as well.

In general, when we evaluate a model or algorithm, we do not care
about how it performs in the training set. Instead, we are interested
in its performance on new unseen data (test data) independent of
the training data. In other words, we want a method that can be
generalized to new data. Thus, a better option to evaluate a model is
the test MSE.

0.0

0.5

1.0

1.5

0 25 50 75 100

K

M
ea

n
S

qu
ar

ed
 E

rr
or

Data set test train

Figure 5: Training and test MSE for
simulated data for different values of K.
Larger values of K correspond to less
flexibility.

To visualize this phenomenon, let us conduct a simulation study
where we know the true form of the function f (·), and thus can
simulate data using it. We can simulate a training set and a test set.
We can then fit KNN regression model with different values of K,
and for each case compute the training and test MSE. Figure 5 shows
results for one such experiment. We see that the test MSE is generally
higher that the training MSE. Training MSE keeps increasing as K
increases (the procedure becomes less flexible). However, the test
MSE first decreases and then levels off before increasing slightly. In
this experiment, the minimum test MSE is produced for K = 50,
while lowest training MSE is for K = 1.8 8 For more such examples and detailed

discussion, see Chapter 2 of An Intro-
duction to Statistical Learning by James et
al.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 model building and data splitting 8

Bias-Variance decomposition

To understand the shape of the test MSE curve, we further investigate
the form of MSE. Recall that we started from the expected prediction
error E[{Y − f̂ (X)}2|X = x0] for the test data x0. Some algebra gives
us9 9 The cross-product term in the second

line can be shown to be zero for test
data set, under the assumption that the
test data is independent of the training
data.

E[{Y− f̂ (x0)}2|x0] = E[{Y− f (x0) + f (x0)− f̂ (x0)}2|X = x0]

= E[{Y− f (x0)}2|X = x0] + E[{ f̂ (x0)− f (x0)}2]

= var(ε) + E[{ f̂ (x0)− f (x0)}2]

= σ2 + E[{ f̂ (x0)− f (x0)}2].

The first term σ2 is a fixed parameter which we can not control.
Even if we have a extremely accurate estimation procedure for f (·)
so that f̂ (X) ≈ f (X), we would still have the expected prediction
error to be σ2. Thus the term σ2 is called the irreducible error – it is the
variance of the target.10 10 We have that σ2 = var(Y|X). Even if

we know true f , this variance remains.The second term is under our control, and depends of the method
of estimation of f (·). Minimizing the expected prediction error is
equivalent to minimizing the second term. This term can further be
decomposed into two parts using similar calculations as above:11 11 Recall, that for a random variable

W, var(W) = E[{W − E(W)}2]. Also,
for an estimator Θ̂ of a parameter θ,
Bias(Θ̂) = E(Θ̂)− θ.

E[{ f̂ (x0)− f (x0)}2]

= E
(
[f̂ (x0)− E{ f̂ (x0)}]2

)
+ E

(
[E{ f̂ (x0)} − f (x0)]

2
)

= var{ f̂ (x0)}+ [Bias{ f̂ (x0)}]2.

Collecting all the terms, we have that

E[{Y− f̂ (x0)}2|x0] = σ2 + var{ f̂ (x0)}+ [Bias{ f̂ (x0)}]2.

Thus the expected prediction error is a combination of the variance
and squared bias of the estimator f̂ (x0).

We again resort to a simulation experiment to see the relative con-
tribution of the variance and squared bias of f̂ (x0) to the prediction
error. Figure 6 shows one simulated training set of size n = 500 along
with the true function used to generate the data. We generate mul-
tiple such training sets, and for each set we fit KNN regression with
K = 1, 30 and 300. The test set if a grid of 101 equally spaced points
in [0.01, 0.99].

−2

0

2

0.00 0.25 0.50 0.75 1.00
x

y

Figure 6: Simulated data of size n=500.

The estimated functions are shown in Figure 7. We notice that for
K = 1 (the most flexible situation), the estimated functions have high
variance, but on average captures the true function well producing
low bias. In contrast, for K = 300 (least flexible case), the estimates
have much less variance but show high bias. For K = 30, it seems
both the bias and variance are balanced. Thus, when looking at ex-
pected prediction error, or its sample version computed by test MSE,

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 model building and data splitting 9

the fit with K = 1 results in high MSE due to variance dominating the
low bias. The K = 300 case results in higher MSE that K = 30 due
to high bias even though the variance is small. The fit with K = 30
seems to balance both bias and variance.

K = 1 K = 30 K = 300

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

−2

0

2

4

X

Y

Figure 7: Simulated data showing bias
and variance of KNN fits.

In general, this phenomenon holds for various regression models.
More flexible models produce estimate with low bias but high vari-
ance. Less flexible models do the opposite – estimates have high bias
but low variance. Minimizing test MSE tends to choose a model that
balances between bias and variance.

We should be aware that test MSE is not the only metric one can
use to evaluate a regression model. A few of the other evaluation
metrics are shown below:

• Root mean squared error (RMSE): just the square root of MSE. Brings
the MSE to the same using as the responses.

• Mean absolute error (MAE): average of absolute values of the predic-
tion discrepancies,

MAE = n−1 ∑
i
|Yi − Ŷi|.

It is more robust the MSE in the sense that it does not emphasize
large differences as MSE does.

• Mean residual deviance: generalizes the concept of MSE for general-
ized linear model fitted with maximum likelihood methods (e.g.,
Poisson and Logistic regression).

• R2: proportion of variance explained by the model.

R2 = 1− ∑i(Yi − Ŷi)
2

∑i(Yi − Ȳ)2 .

A nice property of R2 is that it will be always between 0 and 1. R2

values close to 0 indicate inadequate model fit, while values close
to 1 indicate that the model explains a large amount of variability
in the response.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 model building and data splitting 10

Data splitting

Let us re-examine KNN regression fit to Boston data. Suppose we
use K = 30.

Fit KNN with K=30

knn_fit <- knnreg(medv ~ lstat,

data = Boston,

k = 30)

Predictions

pred <- predict(knn_fit,

newdata = data.frame(lstat = Boston$lstat))

Training MSE

MSE_train <- mean((Boston$medv - pred)ˆ2)

MSE_train

[1] 25.88429

So we see that we have a training MSE about 25.88. However, as we
have discussed so far, relying on training MSE is not a good idea. We
want to know how the model performs on independent test data.
Also, is K = 30 a good choice? Both both these issues, we need a
test data set that we can use to evaluate our model’s performance in
general. We can the holdout method or resampling techniques such as
bootstrap or v-fold cross validation to create test set from our data, and
validate our models performance.

Holdout method

The holdout method randomly splits a given dataset into two sets:
one for training and one for evaluation (the holdout/validation/test
set).12 In practice, 80%−−20%, 70%−−30% or 60%−−40% splits 12 Various authors use different termi-

nology here. We will use these names
interchangeably.

are commonly used for training/test sets. In general, we should
keep in mind that putting too much data for training results in a
small test set, which may not provide a good estimate of the model
performance. On the other hand, putting too much data in the test
set results in a small traing set, which results in poor model fitting.
Other factors such as whether p > n also may impact the split sizes.
Figure 8 shows the basic layout of the holdout method.

A simple way to create such a split is via simple random sampling
without replacement (SRSWOR), that is, by randomly choosing a sub-
set of observations from the data set and putting them aside as the
training set. The remaining observations form the holdout set.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 model building and data splitting 11

Figure 8: The holdout method. The
whole dataset is split into two parts:
traing and holdout sets.

Consider the Boston data again. In base R, we can use the sample()

function13 to perform SRSWOR, as follows. 13 See ?sample for details.

set a seed for reproducible results

set.seed(1234567)

sample from the row indices to include in the test set

n <- nrow(Boston)

index <- sample(x = 1:n,

size = round(0.8*n),

replace = FALSE)

Test and training sets

train <- Boston[index,]

test <- Boston[-index,]

Data dimensions

dim(train)

[1] 405 13

dim(test)

[1] 101 13

We have split the data 80% – 20% in the example above.
The following code chunk shows examples of SRSWOR using

caret and rsample, if we want to split the data manually.14 14 Various packages such as caret, mlr3
and h20 etc. have holdout methods
built into their system so that we often
do not have to do the data splitting
manually.

Using caret

library(caret)

index <- createDataPartition(Boston$medv,

p = 0.8,

list = FALSE,

times = 1)

train.2 <- Boston[index,]

test.2 <- Boston[-index,]

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 model building and data splitting 12

Using rsample

library(rsample)

index <- initial_split(Boston,

prop = 0.8)

train.3 <- training(index)

test.3 <- testing(index)

Ideally, the distribution of Y in the test set will be similar to that
in training set. Figure 9 shows the corresponding distributions (esti-
mated probability densities) of medv for the training/test sets using
each of the methods described above.

0.00

0.02

0.04

0.06

10 20 30 40 50

medv

de
ns

ity

Base R

0.00

0.02

0.04

0.06

10 20 30 40 50

medv

de
ns

ity

caret

0.00

0.02

0.04

0.06

10 20 30 40 50

medv

de
ns

ity

rsample Figure 9: Estimate density functions for
‘medv‘ variable in training (orange) and
test (black) sets as obtained using base
R, caret, and rsample packages.

A disadvantage of SRSWOR is that it does not always preserve
distribution of the response variable. For example, in a classification
problem with two classes (‘Yes’ and ‘No’), we might have 70% in-
dividuals in ‘Yes’ group and the remaining 30% in the ‘No’ group.
Performing SRSWOR in the data may lead to a test set with over-
representation/under-representation of the groups.15 In this case, a 15 This issue can arise in a regression

problem where Y might have a skewed
distribution. The ideal test set should
contain both small and large values of
Y. SRSWOR can not guarantee this.

stratified sampling strategy is appropriate.
Stratified random sampling is used to explicitly control aspects of

the distribution of Y. This is useful with data with small sample
size or skewed response distribution. Stratified random sampling
strategy is to draw sample for each group (strata) of Y so that the test
set represents the distribution of Y of the whole data.16 We can use 16 For continuous Y, we might split

Y into multiple groups based on its
quantiles, and sample from each group.

the initial_split() function as before for this purpose but with an
extra argument strata.

If extreme class imbalance is present in the data (say 90% “No”
and only 10% “Yes”), we might choose to over-sample the rare class,
or under-sample the abundant class, or a combination of both the
strategies can be employed. A popular technique in this regard is
Synthetic Minority Over-sampling Technique (SMOTE),17 which gen- 17 N. Chawla et al. SMOTE: Synthetic

minority over-sampling technique J.
Artif. Intell. Res. (2002). See also, Dina
Elreedy, Amir F. Atiya, A Comprehen-
sive Analysis of Synthetic Minority
Oversampling Technique (SMOTE) for
handling class imbalance, Information
Sciences, Volume 505, 2019.

erates synthetic samples from the rare class. In particular, SMOTE
takes a random observation from the rare class and then finds its

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 model building and data splitting 13

nearest neighbors in the rare class. Then SMOTE generate new sam-
ples using the convex combinations of the original randomly selected
observation and one of the the nearest neighbors. The caret package
has SMOTE implementation as a possible sampling strategy. Authors
of SMOTE also suggest that a combination of SMOTE and under-
sampling the majority class works better than just using SMOTE.

Let us now investigate the holdout method using the Boston data.
Recall, that for K = 30, the training MSE was approximately 25.88.

set.seed(1001)

(Using rsample) train/test sets (80/20)

index <- initial_split(Boston,

prop = 0.8)

train <- training(index)

test <- testing(index)

Fit knn on training set with K = 30

knn_fit <- knnreg(medv ~ lstat,

data = train,

k = 30)

Predictions on test set

pred <- predict(knn_fit,

newdata = data.frame(lstat = test$lstat))

Test MSE

MSE_test <- mean((test$medv - pred)ˆ2)

MSE_test

[1] 31.31455

Thus the test MSE is 31.31, which is slightly higher that the training
MSE. It is as we expected – training MSE most likely underestimates
the prediction error, while test MSE can be viewed as a reasonable es-
timate of the same. It is important to remember that we are operating with
the setting K = 30 - the test MSE might not reflect the best performance the
model can have.

Now let us address the question about choosing the optimal K,
that is, the value of K that gives the best general performance. For
the full data set, we can tune K using holdout method, and fit the
resulting model to the whole data. In particular,

(a) Split the data into training and test sets

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 model building and data splitting 14

(b) For each candidate value of K, fit the model in the training set,
and compute MSE using the test set.

(c) Choose the K which gives minimum test MSE.

(d) Fit KNN with optimal K to the full data set.

Then the trained model can be used for future predictions.

set.seed(1001)

(Using rsample) train/test (80/20)

index <- initial_split(Boston,

prop = 0.8)

train_set <- training(index)

test_set <- testing(index)

Fit KNN using train for different values of K

and compute MSE on the test set

Candidate values of K

kgrid <- c(1:100)

vector to store mse values for different k

mse <- rep(NA, length(kgrid))

run through all k values

for(kn in kgrid){

fit <- knnreg(medv ~ lstat,

data = train_set,

k = kn)

pred <- predict(fit,

newdata = test_set)

mse[kn] <- mean((pred - test_set$medv)ˆ2)

}

Optimal K

k_opt <- kgrid[which.min(mse)]

Refit training set with optimal K

fit_final <- knnreg(medv ~ lstat,

data = Boston,

k = k_opt)

0 20 40 60 80 100

30
40

50
60

K

M
S

E

Figure 10: MSE profile for tuning K.

It turns out that the optimal choice of K is Kopt = 35. The plot of
MSE profile obtained form the tuning process is shown in Figure 10.

Before proceeding further, let us take a look into the caret pack-
age, and implement the procedure using caret’s functionality. As we
will see, much of the code above can be streamlined. The plot of MSE

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 model building and data splitting 15

profile obtained form the tuning process is shown in Figure 11 for
this run.

set.seed(1001)

Candidate values of K

kgrid <- expand.grid(k = c(1:100))

Parameters governing training process

hold <- trainControl(method = "LGOCV",

p = 0.8,

number = 1)

Training the model

knn_fit <- train(medv ~ lstat,

data = Boston,

method = "knn",

tuneGrid = kgrid,

trControl = hold

)

Plot Root MSE (RMSE)

plot(knn_fit, lwd=2, pch=19)

#Neighbors

R
M

S
E

 (
R

ep
ea

te
d

Tr
ai

n/
Te

st
 S

pl
its

)

5.0

5.5

6.0

6.5

7.0

7.5

0 20 40 60 80 100

Figure 11: MSE profile for tuning K
using caret.

In the code block above18, first we setup the grid of values for the

18 Execute these lines of code yourself
and examine the output of each step to
better understand the process.

hyperparameter using the expand.grid() function. This creates a
dataframe with the candidate values. This can be done for multiple
hyperparameters as well

Next, we use the trainControl() function to create parameter
specification for the training process.19 The option LGOCV is the hold-

19 It does not actually train the model
yet. It just creates a blueprint for the
process.

out method, p=0.8 specifies the size of training set, and number = 1

specifies how many times this process is repeated.
Finally, the train() function performs the training according to

the specifications. The argument method = "knn" ensures that we are
running KNN regression.

Now we ask again: how does this entire procedure work in gen-
eral, that is, can we estimate the generalization error of this proce-
dure including the tuning of the hyperparameter? Here also, we can use
a holdout approach:

• Split the data into training/test set.

• Apply the procedure described above (including tuning), that is,
all the steps (a) – (d) to the training set to get the final model.

• Compute MSE using the test set.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 model building and data splitting 16

Let us use caret again to perform these steps. Recall we have already
set the candidate values in kgrid, and the training specifications in
hold in the previous code block. Also, we have split the data into
training/test sets before – they are stored in train_set and test_set,
respectively. Thus we present only code that is new.

Training the model on train_set

knn_fit <- train(medv ~ lstat,

data = train_set,

method = "knn",

tuneGrid = kgrid,

trControl = hold

)

plot(knn_fit)

#Neighbors

R
M

S
E

 (
R

ep
ea

te
d

Tr
ai

n/
Te

st
 S

pl
its

)

4.5

5.0

5.5

6.0

0 20 40 60 80 100

Figure 12: MSE profile for tuning K
using holdout method for tuning in
the training set (80 percent of the whle
data).

Optimal K, and refit on the training set

optimal K

k_opt <- knn_fit$bestTune$k

Refit with optimal K

knn_fit <- train(medv ~ lstat,

data = train_set,

method = "knn",

tuneGrid = expand.grid(k = k_opt),

trControl = trainControl(method = "none")

)

Predict test_set and compute MSE

pred <- predict(knn_fit, newdata = test_set)

MSE_test <- mean((test_set$medv - pred)ˆ2)

MSE_test

[1] 31.31455

The test MSE of 31.31, equivalently, RMSE 5.6 gives us an unbiased
estimate of prediction error of our procedure in unseen test data.
This also reflects the added variability due to tuning of the hyperpa-
rameter. Note again that for prediction purposes, we will still use the
model fitted to the whole data.

0 20 40 60 80 100

0
10

20
30

40
50

60
70

Neighbors

Te
st

 M
S

E

Figure 13: Test MSE during tuning
hyperparameters for 10 runs of the
model training.

The advantage of the holdout method is that it is conceptually and
computationally simple. However, this method can produce highly
variable test error. To see this, we can repeat the hyperparameter tun-
ing procedure a few times. The plot of the test MSE profiles during
tuning process is shown in Figure 13 for 10 training runs. As we see,
there is a substantial amount of variability in the test MSE.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 model building and data splitting 17

Another possible disadvantage is that the holdout method may
overestimate the test error since we are fitting the statistical model
with only a subset of the whole data.

Both these issue might be solved if we repeat the inner/outer
loops a few times, and take average of the resulting MSE values.
Resampling techniques such as cross-validation provides a natural
way to do so.

V-fold Cross-validation (V-fold CV)

The V-fold CV procedure splits the data into multiple parts, and then
cycles through those parts to compute test MSE. In particular, V-fold
CV is performed to estimate the test error of a model/procedure as
follows:

1. Split the data randomly into V (roughly) equal sized disjoint
parts, called folds. Thus we have fold 1, . . ., fold V.

2. For each fold ` = 1, . . . , V, do:

a. Set Fold ` as the test set, and the remaining folds together as
the training set.

b. Train the model using the training set and compute MSE20 20 We can use any other performance
metric, e.g., MAE, classification accu-
racy etc. here.

using the test set (Fold `), say MSE`.

3. The final estimate of test error is formed by taking the average of
the V MSE values: 1

V ∑V
`=1 MSE`.

Keep in mind that the model training step can also include tuning
hyperparameter(s) as well. Figure 14 shows the layout of V-fold CV
procedure.

Figure 14: Layout of the V-fold cross-
validation procedure. Data are first
randomly split into V equal sized parts,
called folds. Each fold is then used as
a test set while the remaining folds are
used to fit the model. The test error is
estimated by taking the average of the
MSEs from the V folds.

Let us apply CV in practice. Recall, we started our discussion of
data splitting by fitting a KNN regression with K = 30, and used
holdout method to estimate the test error of the procedure. Now we
use the 5-fold CV to do the same. Since we have fixed K = 30 (no
tuning), there is no inner loop, and the out loop is 5-fild CV.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 model building and data splitting 18

We again use caret as follows.

set.seed(1001)

Set K=30

kgrid <- expand.grid(k = 30)

Training control params

cv <- trainControl(method = "cv",

number = 5)

Fit the model

knn_fit <- train(medv ~ lstat,

data = Boston,

method = "knn",

tuneGrid = kgrid,

trControl = cv)

knn_fit

k-Nearest Neighbors

##

506 samples

1 predictor

##

No pre-processing

Resampling: Cross-Validated (5 fold)

Summary of sample sizes: 404, 405, 406, 404, 405

Resampling results:

##

RMSE Rsquared MAE

5.245283 0.6792958 3.773841

##

Tuning parameter ’k’ was held constant at a value of 30

test MSE

knn_fit$results$RMSEˆ2

[1] 27.51299

The estimate test error is 27.51 for the 30-NN regression fit. The
train() function, by default, returns RMSE, rather than MSE. The
RMSE of of each of the 5 folds can be obtained using the resample

component of knn_fit:

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 model building and data splitting 19

knn_fit$resample

RMSE Rsquared MAE Resample

1 5.410063 0.6572638 3.630137 Fold1

2 4.812217 0.7555945 3.615484 Fold2

3 5.063268 0.7138431 4.003944 Fold3

4 5.822570 0.6101198 4.020697 Fold4

5 5.118295 0.6596576 3.598944 Fold5

Note that the best reported RMSE is the average of the 5 RMSE
values above. If we want the average MSE, we have to perform the
computation manually, which is slightly different than computing
MSE from the best RMSE.21 21 (Average of RMSE)2 is not the same

as (average of RMSE2)1/2.

mean(knn_fit$resample$RMSEˆ2)

[1] 27.63243

For the rest of the chapter, we will use RMSE as is default in
caret.

We can tune hyperparameters using V-fold CV as well:

1. Split the data randomly into V folds.

2. For each fold ` = 1, . . . , V, do:

a. Set Fold ` as the test set, and the remaining folds together as
the training set.

b. Fit the model using the training set, and evaluate MSE/RMSE22 22 We can use any other performance
metric, e.g., MAE, classification accu-
racy etc. here.

using the test set (Fold `), for each value of the hyperparameter.

3. From step 2., for each value of hyperparameter, we should have a
MSE/RMSE value for each fold (V of them). The final MSE/RMSE
for each of the hyperparameter value is calculated by taking the
mean of V MSE/RMSE values from the V folds. Chose the optimal
value of the hyperparameter by minimizing the final MSE/RMSE.

4. Use the best hyperparameter value to refit the model on the whole
dataset.

Continuing from the previous example, let us tune K using 5-fold
CV, using caret. Figure 15 shows the MSE profile for the tuning
process.

set.seed(1001)

Set K grid

kgrid <- expand.grid(k = c(1:100))

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 model building and data splitting 20

Training control params

cv <- trainControl(method = "cv",

number = 5)

Fit the model

knn_fit <- train(medv ~ lstat,

data = Boston,

method = "knn",

tuneGrid = kgrid,

trControl = cv)

plot(knn_fit)

#Neighbors

R
M

S
E

 (
C

ro
ss

−
V

al
id

at
io

n)

5.5

6.0

6.5

7.0

0 20 40 60 80 100

Figure 15: Results from hyperparameter
tuning using 5-fold CV.

Optimum K and model refit on full data

k_opt <- knn_fit$bestTune$k

knn_tuned <- train(medv ~ lstat,

data = Boston,

method = "knn",

tuneGrid = expand.grid(k = k_opt),

trControl = trainControl(method = "none"))

We can use the final fitted model for further predictions.
The code above does not estimate the test error of the tuned

model. If we want to estimate the test MSE/RMSE of the tuned
model, we can follow the same strategy as in with holdout method.
We can use either holdout or V-fold CV in the outer loop. Unfor-
tunately, caret can only perform the inner loop computation for
tuning, so we need to manually create the holdout set or the CV folds
for the our loop. The easiest way to create folds is to use the rsample

package and vfold_cv() function.

folds <- vfold_cv(Boston, v=5)

folds

5-fold cross-validation

A tibble: 5 x 2

splits id

<list> <chr>

1 <split [404/102]> Fold1

2 <split [405/101]> Fold2

3 <split [405/101]> Fold3

4 <split [405/101]> Fold4

5 <split [405/101]> Fold5

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 model building and data splitting 21

The column named splits contain the folds. We can access each fold
by using the training() and testing() functions. For example, we
can obtain fold 1, and the corresponding training set (the remaining
folds) as follows.

fold_1 <- testing(folds$splits[[1]])

training_1 <- training(folds$splits[[1]])

dim(fold_1)

[1] 102 13

dim(training_1)

[1] 404 13

Now we can apply the model fitting/tuning procedure on each of the
training set and compute test MSE/RMSE on the folds. The final test
error can be estimated by taking average of the MSE/RMSE values
form the folds.

Wrap the procedure (including tuning) in a function

tuned_knn_cv <- function(data_split){

Input: data_split is a v_fold cv split

obtained using vfold_cv function

train and test sets from data splits

train_set <- training(data_split)

test_set <- testing(data_split)

Set K grid

kgrid <- expand.grid(k = c(1:100))

Training control params

cv <- trainControl(method = "cv",

number = 5)

Fit the model on train_set

knn_fit <- train(medv ~ lstat,

data = train_set,

method = "knn",

tuneGrid = kgrid,

trControl = cv)

Optimum K and model refit on full train_set

k_opt <- knn_fit$bestTune$k

knn_tuned <- train(medv ~ lstat,

data = train_set,

method = "knn",

tuneGrid = expand.grid(k = k_opt),

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 model building and data splitting 22

trControl = trainControl(method = "none"))

Predict test_set and compute test_mse

pred <- predict(knn_tuned,

newdata = test_set)

test_mse <- mean((test_set$medv - pred)ˆ2)

return(test_mse)

}

Apply the process above to each split

mse_folds <- lapply(folds$splits, tuned_knn_cv)

MSE_test <- mean(unlist(mse_folds))

MSE_test

[1] 28.26914

An advantage of V-fold CV is that every observation in the data
will be used once as a part of test set, and V − 1 times as a part of
training set. Another advantage of V-fold CV is that it provides test
MSEs which have much less variability than those from holdout
method. To visualize this phenomenon, we repeated the 5-fold CV
based tuning process 10 times – the resulting MSE profiles are shown
in Figure 16. We can see that the CV estimated MSE values have
much less variance compared to holdout method shown in Figure 13.

0 20 40 60 80 100

0
10

20
30

40
50

60
70

Neighbors
Te

st
 M

S
E

Figure 16: Results from hyperparameter
tuning using 5-fold CV, repeated 10

times.

Leave-One-Out Cross-Validation (LOOCV)

As a special case of V-fold cross-validation, consider the case with
V = n, where n is the sample size of your data. In this case, every
observation will be its own fold. Suppose we observe data (Yi, Xi) for
i = 1, . . . , n. The CV then proceeds as follows:

1. For observation (fold) i = 1, . . . , n, do

• Set the i-th observation (Yi, Xi) as the test set, and the remain-
ing n− 1 as the training set.

• Fit the model on the training set, and predict Yi (test set)
• Compute MSEi = (Yi − Ŷi)

2

2. Compute the test MSE as the average of the n MSE values from
step 1., that is, 1

n ∑n
i=1 MSEi.

This procedure is known as leave-one-out cross-validation (LOOCV).
There are two advantages of LOOCV over the holdout method.

First, the holdout method fits the models on a smaller subset of the
full data (e.g., 80% of whole data, even less if another loop/tuning
is involved). This may introduce bias in estimation of test error – the
holdout method often overestimates the test error due to the fact that

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 model building and data splitting 23

the model is trained using a smaller sample. In contrast, LOOCV
trains the model using n − 1 observations, which is effectively the
entire dataset, and thus reducing estimation bias.

The second advantage of LOOCV is that, there is no random split-
ting of the data since LOOCV cycles through every observation sys-
tematically. Thus results from running LOOCV multiple times will
give the same answer, whereas running the holdout method multiple
times on the same dataset may give (very) different results.

In caret we can specify method = "LOOCV" in the trainControl()

specification to perform LOOCV. Figure 17 shows the MSE profile for
tuning K in the Boston data.

Values of K, and LOOCV specification

kgrid <- expand.grid(k = 1:50)

loo <- trainControl(method = "LOOCV")

Model fit

fit <- train(medv ~ lstat,

data = Boston,

method = "knn",

trControl = loo,

tuneGrid = kgrid)

plot(fit)

#Neighbors
R

M
S

E
 L

ea
ve

−
O

ne
−

O
ut

 C
ro

ss
−

V
al

id
at

io
n

5.5

6.0

6.5

7.0

0 10 20 30 40 50

Figure 17: Results from tuning K using
LOOCV on the whole Boston data.

A disadvantage of LOOCV is its potential heavy computation
cost, especially for large sample size. For example, in Boston data
(n = 506), we have to fit n − 1 = 505 models for each value of K!
This can be extremely difficult for larger n. In contrast, holdout and
V-fold CV procedures are more computationally efficient.

When we estimate the test error, we might have different goals to
do so in different situations. When we are interested in evaluating
model performance in a test set, the actual value of the test error is
of interest. However, when we are tuning a hyperparameter (e.g., K
in KNN regression), our primary goal is to find the minimizer of test
error, rather than test error itself. In the former case, the accuracy of
the cross-validation estimates might be an issue. But in the later case,
the minimizer might still be valid even if the estimate of the test error
itself is not accurate. Examples from several simulation studies have
been presented in the textbook (Introduction to Statistical Learning)
to examine the point made above. Figure 18 shows true test MSE,
and the estimates using 10-fold CV and LOOCV for a few simulation
scenarios.

We can observe that estimates from 10-fold CV and LOOCV are
very similar. However, the quality (bias) of the estimates changes de-
pending on the scenario. On the other hand, even though sometimes
the CV estimate underestimate the true test error, the minimizer of

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 model building and data splitting 24

2 5 10 20

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Flexibility

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

2 5 10 20
0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Flexibility

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

2 5 10 20

0
5

1
0

1
5

2
0

Flexibility

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

Figure 18: Comparison of CV esti-
mate of test error and its minimizer
compared to true test error in several
simulation studies. Shown are the
true test MSE (blue), LOOCV estimate
(black dashed line), and the 10-fold
CV estimate (orange), along with their
minimum (cross). Figure and caption
adapted from Introduction to Statistical
Learning, Figure 5.6.

the CV estimates are very close to the minimizer of the true test error.
Thus they tend to correctly identify the flexibility (e.g., how small-
/large K should be in KNN) of the procedure.

As a final note on cross-validation, the choice of V in V-fold
cross-validation depends the bias-variance trade-off23 of the proce- 23 See Chapter 5.1.4 of Introduction to

Statistical Learning, second edition for a
detailed discussion.

dure. Given a sample size of n, the V-fold CV uses approximately
(V − 1)n/V observation to fit the model. Thus LOOCV effectively
uses the whole data to rain the model, and therefore produces almost
unbiased estimates of the test error. However, a 5-gold CV might pro-
duce a biased estimate. On the other hand, in LOOCV the n model
fits essentially uses the same dataset (any two fits share n − 2 com-
mon training observations), the resulting test MSE values are highly
correlated. Averaging the n in MSE values LOOCV does not reduce
the variance due to them being highly correlated. Thus LOOCV es-
timates tend to have high variance. In contrast, a 5-fold CV does not
have as high level of overlap between the training folds, and pro-
duces less variable estimates of test MSE. In practice, we most often
use 5-fold or 10-fold cross validation.

Bootstrapping

Recall that in the holdout method, we used simple random sampling
without replacement to create a holdout set smaller than the original
data. In contrast, a bootstrap sample is a random sample with replace-
ment that is of the same size as the original data. Since the sampling
is performed with replacement, some observations (rows) will be re-
peated in the bootstrap sample, and therefore a few observations in
the original data will not be included in the bootstrap sample. The
omitted observations are called out-of-bag (OOB) samples.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 model building and data splitting 25

Bootstrap and Out-Of-Bag samples

Bootstrap sample: A random sample drawn with replacement
of the original data.

Out-Of-Bag sample: The observations not included in the
bootstrap sample.

In statistical learning, we train our model using the bootstrap sam-
ple, and test using OOB samples. We do not use a single bootstrap
sample however; instead, many bootstrap samples are drawn, and the
model is trained/tested repeatedly.

We can perform bootstrap manually using the bootstraps function
in rsample package. The code below draws 10 bootstrap samples
from the Boston data.

Bootstrap samples

boot_sample <- bootstraps(Boston, times = 5)

boot_sample

Bootstrap sampling

A tibble: 5 x 2

splits id

<list> <chr>

1 <split [506/181]> Bootstrap1

2 <split [506/176]> Bootstrap2

3 <split [506/183]> Bootstrap3

4 <split [506/189]> Bootstrap4

5 <split [506/186]> Bootstrap5

Accessing the bootstrap sample

boot_1 <- training(boot_sample$splits[[1]])

dim(boot_1)

[1] 506 13

0.00

0.02

0.04

0.06

10 20 30 40 50

medv

de
ns

ity

Figure 19: Distribution of ‘medv‘ in the
Boston data (red solid line), and in 10

bootstrap samples (black dashed lines).

[1] 181 13

As with holdout sample, we might want to check whether the
distribution of Y in the bootstrap samples is similar to that of the
original data. Figure 19 shows distributions of medv from 5 bootstrap
samples and that of the original data. We can see that the distribu-
tions are quite similar.

Let us look at the size of the OOB samples that we can use as a
test set. We generated 500 bootstrap samples from the Boston data –

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 model building and data splitting 26

the percentage of observations that are OOB are shown in Figure 20.
On average, we have about 36.72 percent of observations are OOB.24 24 Interested readers: can you verify this

number theoretically? Think about the
probability that the i-th observation
being included in a typical bootstrap
sample. Then see how this probability
changes for different values of sample
size n.

0

20

40

60

0.32 0.34 0.36 0.38 0.40

oob_percent

co
un

t

Figure 20: Percent of original observa-
tions in OOB sample.

Bootstrap is a general method, and can be used to assess accuracy
of statistical procedures. Given a dataset D, suppose we want to
compute some quantity S(D) based on the whole dataset. We can use
bootstrap to assess any aspect of the distribution of S(D) (e.g., mean,
variance, quantiles etc.) as follows:

• Draw B bootstrap samples from the original data, call them
D∗1 , . . . ,D∗B.

• For b = 1, . . . , B, do

– Use the b-th bootstrap sample, D∗b to compute the same quan-
tity you computed based on the original data, S(D∗b). For ex-
ample, if we want to compute sample mean of the original data,
we would need to compute sample mean using the bootstrap
sample as well.

• Use the bootstrap estimates S(D∗1), . . . , S(D∗B) to assess properties
of S(D).

Figure 21 shows a layout of using bootstrap as described above.

Figure 21: Layout of bootstrap proce-
dure.

For example, we can examine the distribution of S(D) by estimating
it by using the bootstrap replicates S(D∗1), . . . , S(DB) (e.g., a his-
togram or a density estimate). We can estimate the variance of S(D)

using the sample variance of the replicates:

v̂ar{S(D)} = 1
B− 1

B

∑
b=1

[S(D∗b)− S̄∗]2,

where S∗ = ∑B
b=1 S(D∗b)/B is the sample mean of the bootstrap

replicates.
Consider the example of fitting KNN regression to Boston data

with fixed K = 30.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 model building and data splitting 27

knn_k30 <- knnreg(medv ~ lstat,

data = Boston,

k = 30)

Suppose we want to estimate f (x) when x = 5, that is, expected
value of medv when lstat = 5. The estimation is shown below.

pred_k30 <- predict(knn_k30,

newdata = data.frame(lstat = 5))

pred_k30

[1] 31.81

Note that, predicted value of Y when X = 5 is the same f̂ (5), the
estimated value of f (x) when x = 5.25 What is the standard error of 25 Even though the predicted Y and

estimated f (5) values are the same,
their variability is not the same. Recall,
variability of the prediction is repre-
sented by expected prediction error
at x = 5 is bias2(f̂ (5)) + var(f̂ (5)) +
irreducible error. In this case, we are
only interested in var(f̂ (5)).

this estimate? What is the distribution of the estimator? We can use
bootstrap to answer these questions.

We will draw 200 bootstrap samples from Boston data. For each
bootstrap sample, we will fit the KNN procedure with K = 30, and
compute the estimate – this is all according to Figure 21.

Wrap the prediction process in a function

for easy use

knn_k30_predict <- function(split){

Input: split from bootstrap using rsample

Output: prediction at lstat = 5

Get training set

train_set <- training(split)

KNN with K = 30

knn_k30 <- knnreg(medv ~ lstat,

data = train_set,

k = 30)

Predict at lstat = 5

pred <- predict(knn_k30,

newdata = data.frame(lstat = 5))

return(pred)

}

Draw bootstrap samples

B <- 200

boot_sample <- bootstraps(Boston, times = B)

Apply the prediction function to

``the bootstrap samples

boot_pred <- sapply(boot_sample$splits, knn_k30_predict)

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 model building and data splitting 28

Figure 22 shows the bootstrap distribution of f̂ (5). Some sum-
maries of the bootstrap estimates are shown below.

0.0

0.1

0.2

0.3

28 30 32 34

Predicted medv at lstat = 5

de
ns

ity

Figure 22: Distribution of estimator of
E(medv when lstst = 5). Also shown the
mean of the bootstrap estimates (red
solid lile), and original estimate from
the full data (black dashed line),

Summary of bootstrap estimates

summary(boot_pred)

Min. 1st Qu. Median Mean 3rd Qu. Max.

28.25 30.33 31.28 31.28 32.21 34.84

Variance/SD of the estimate

c(variance = var(boot_pred),

sdev = sd(boot_pred))

variance sdev

1.623432 1.274140

MSE

mean((boot_pred - pred_k30)ˆ2)

[1] 1.891878

In a learning method, we can tune hyperparameters using boot-
strap as before – we fit the model using bootstrap samples, and com-
pute test MSE using OOB samples. The best hyperparameter value
can be chosen by minimizing test MSE. In caret this can be done by
specifying method = bootstrap the trainControl() function.

set.seed(1001)

Values of K, and bootstrap specification

kgrid <- expand.grid(k = 1:100)

boot <- trainControl(method = "boot",

number = 25)

Model fit

boot_tuned_knn <- train(medv ~ lstat,

data = Boston,

method = "knn",

trControl = boot,

tuneGrid = kgrid)

plot(boot_tuned_knn)

#Neighbors

R
M

S
E

 (
B

oo
ts

tr
ap

)

5.5

6.0

6.5

7.0

0 20 40 60 80 100

Figure 23: Results from bootstrap (25

reps) tuning of K.

Figure 23 shows the RMSE profile for tuning K using bootstrap.
Compared to V-fold cross-validation, bootstrap tends to produce

less variable estimates. However, on average only 63.2% observations
get represented in bootstrap samples. Thus bootstrap estimates may
have some bias similar to using a 2-fold or 3-fold CV.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 model building and data splitting 29

K-Nearest Neighbors Classification

The discussion and techniques presented so far also apply to classi-
fication setting, the main difference is model evaluation metric. To
demonstrate the ideas clearly, let us introduce a simple classification
technique based of K-nearest neighbors.

Suppose we have training data (Yi, Xi) for i = 1, . . . , n, where Yi is
categorical variable denoting class label of Xi. For a given predictor
x0, KNN classifier predicts the class label as follows:

• Identify the K observations in the training data such the their X
values are “nearest” to x0.26 26 See the discussion about distance

metric in KNN regression section.• Predict the class label corresponding to x0 as the class having the
majority vote, that is, having the most number of points among the
K neighbors obtained form previous step.

Formally, we can think of the process as estimating the conditional
probability of P(Y|X). Suppose that we have J classes, that is, Y can
take values 1, . . . , J.27 suppose SK(x0) denotes the indices of the K 27 These are not numeric values. They

are merely labels for J classes.points whose X values are nearest to x0. Then for a data point x0,
KNN estimates the conditional probability that the class label is j
given X = x0 as28 28 Here I(·) denotes the indicator

function. For any event A, we define
I(A) = 1 if A is true, 0 otherwise.

P̂(Y = j|X = x0) =
1
K ∑

i∈SK(x0)

I(Yi = j),

for each j = 1, . . . , J. Thus, for each of the J classes, we compute the
proportion of the K neighbors belonging to that class. We classify x0

to the class that has the highest estimated probability.

Bayes classifier

The motivation behind estimating the conditional probabilities P(Y =

j|X) is from minimizing test error rate. Similar to regression, given a
new independent test point X with label Y, we can define expected
prediction error for classification as

E[I(Y 6= Ŷ)],

where Ŷ is the prediction from a classifier. Notice that Y depends on
X, and Ŷ depends on both X and the training set. We want a classifer
that minimizes the expected prediction error. It can be shown29 that 29 Interested readers can consult Ele-

ments of Statistical Learning by Hastie et
al. (2017).

the optimal classifier is the one that predicts a new observation x0 by
Ŷ such that

Ŷ = j if P(Y = j|X = x0) is maximum among P(Y = 1|X =

x0), . . . , P(Y = J|X = x0).

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 model building and data splitting 30

The optimal classifier is called the Bayes classifier.

Bayes classifier and error

Bayes Classifier: Classifies an observation to the most proba-
ble class using the discrete conditional distribution of P(Y|X)

Bayes error rate: misclassification error rate of the Bayes clas-
sifier. For a given x0, Bayes error is 1− max`P(Y = `|X = x0).
The overall Bayes rate is 1− E[max`P(Y = `|X)].

Thus every classification problem has a corresponding Bayes classi-
fication rule and associated Bayes error rate. The Bayes rate is anal-
ogous to the irreducible error that we encountered in the regression
setting.

Unfortunately, we can not directly use the Bayes classifier since we
do not know the distribution of Y|X. Different classifiers use different
estimators of such conditional distributions – KNN uses proportion
of points in the K nearest neighbors belonging to each class as the
estimator, as discussed before.

Evaluating a classifier

To evaluate the performance of the classifier, instead of test MSE, we
can use classification accuracy or misclassification error rate.30 30 In the definitions below, |S| denotes

the cardinality of S, that is, the number
of observations in S.Accuracy/error rate of a classifier

Accuracy: the proportion of points correctly classified to their
respective classes. With a set of observations S,

Accuracy =
Total correct classification

Total number of points
=

1
|S| ∑i∈S

I(Yi = Ŷi).

We can compute training and test accuracy depending on
whether S is the training or testing set.

Misclassification error rate: The proportion of points wrongly
classified.

Error rate =
Total incorrect classification

Total number of points
=

1
|S| ∑i∈S

I(Yi 6= Ŷi).

As before, we can compute training and test error rate.

As with regression setting, here too we aim to maximize test accu-
racy or minimize test error. minimizing training error is undesirable
since it will lead to overfitting the data. For example, consider K = 1,

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 model building and data splitting 31

a 1-NN classifier. Since each Xi is the closest neighbor to itself, the
training error would be zero. Figure 24 shows training and test er-
ror rates from a simulation study (figure adapted from the textbook
Introduction to Statistical Learning).

0.01 0.02 0.05 0.10 0.20 0.50 1.00

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

1/K

E
rr

o
r

R
a

te

Training Errors

Test Errors

Figure 24: Training and test error rates
for a KNN classifier based on 200

training and 5000 test observations. The
error rates are plotted against 1/K. The
black dashed line shows the Bayes error
rate. Figure adapted from Introduction
to Statistical Learning.

Role of hyperparameter in classification

As with KNN regression, the hyperparameter K determines how
flexible the KNN method is. However, the idea of flexibility is subtle
in this case. Consider a two class problem – a classification problem
with two classes. A classifier will attempt to create regions using the
predictors so that a new data point could be classified into a class
depending on which region it fall into. The boundary that separates
the these regions is effectively the classification rule for that classifier.
Figure 25 shows a classification problem with two classes. A certain
classifier creates two regions (red and blue) so that a new data point
will be classified to red/blue classes if it falls in the corresponding re-
gion. The decision boundary, is the boundary of the regions, a straight
line in this example.

500

1000

1500

11 12 13 14 15

X1

X
2

Prediction 1 2 Class 1 2

Figure 25: Two-dimensional classifica-
tion.

How would the decision boundary look like for the Bayes classi-
fier? For a two class problem, the Bayes classifier assigns the most
probable class to a new data point. Thus for a new x0, it will be
assigned to class 1 if P(Y = 1|X = x0) > P(Y = 2|X = x0), as-
sign to class otherwise. Equivalently, x0 will be assigned to class 1 if
P(Y = 1|X = x0) > 0.5. Thus the decision boundary of the Bayes
classifier is the set of all x such that P(Y = 1|X = x) = 0.5.

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

oo

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

oo

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

oo

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

oo

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

KNN: K=1 KNN: K=100 Figure 26: Impact of K on decision
boundaries of KNN classifiers. The
Bayes dicision boundary is shown using
purple dashed line. Image adapted
from Introduction to Statistical Learning.

The value of K in a KNN classifier determines how smooth or
rough the decision boundary is (this is analogous to estimating f (·)
in a regression problem). Figure 26 shows decision boundaries for

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 model building and data splitting 32

KNN classifier for different values of K in a simulated data along
with that of the Bayes classifier. For small value of K (in this example,
K = 1), the boundary is extremely rough. Although it follows the
Bayes boundary closely, it is overly flexible (uses local features) and
tries to discover patterns that do not conform to the Bayes boundary.
This is an example of overfitting a classification problem. In contrast,
for a large value of K (such as K = 100), the decision boundary is
much smoother but does not capture the shape of the Bayes bound-
ary.31 Large value of K results in a non-flexible (uses global features 31 Again we see the bias-variance trade-

off here.but averages over local ones) classifier that perhaps captures the over-
all trend of the Bayes boundary, but misses the details. In fact, as K
grows, the decision boundary will get closer to a straight line.

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o o
o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o
o

oo

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

oo

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

X1

X
2

KNN: K=10

Figure 27: Decision boundary for K =
10 using simulated data presented in
Figure 26. The Bayes dicision boundary
is shown using purple dashed line.
Image adapted from Introduction to
Statistical Learning.

Therefore, we need to tune K so that the “optimal” K will result
in a decision boundary that is not too rough but also sufficiently
captures the shape of the Bayes boundary. Firgure 27 shows one such
example with K = 10. In practice, we might choose K by minimizing
the test error rate or equivalently maximizing test accuracy.

Building a classifier

Consider the wines data set available at the UCI machine learning
repository.32. The dataset contains quantities of 13 constituents found

32 https://archive.ics.uci.edu/ml/

datasets/wine; also available with the
textbook Applied Multivariate Statistics
with R by Zelterman

in each of the three types (cultivars) of wines.

Read the data

wines <- read.table("data/Wines.txt", header = TRUE)

wines$Class <- as.factor(wines$Class)

A snapshot of the full data is shown below. The goal is to find a
rule that can assign a specimen of wine to its region. In other words,
we want to predict the classes (regions) based on the predictors (13

variables).

A tibble: 178 x 14

Class Alcohol Malic Ash Alcal Mg Phenol Flav Nonf Proan Color Hue

<fct> <dbl> <dbl> <dbl> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 1 14.2 1.71 2.43 15.6 127 2.8 3.06 0.28 2.29 5.64 1.04

2 1 13.2 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.38 1.05

3 1 13.2 2.36 2.67 18.6 101 2.8 3.24 0.3 2.81 5.68 1.03

4 1 14.4 1.95 2.5 16.8 113 3.85 3.49 0.24 2.18 7.8 0.86

5 1 13.2 2.59 2.87 21 118 2.8 2.69 0.39 1.82 4.32 1.04

6 1 14.2 1.76 2.45 15.2 112 3.27 3.39 0.34 1.97 6.75 1.05

7 1 14.4 1.87 2.45 14.6 96 2.5 2.52 0.3 1.98 5.25 1.02

8 1 14.1 2.15 2.61 17.6 121 2.6 2.51 0.31 1.25 5.05 1.06

9 1 14.8 1.64 2.17 14 97 2.8 2.98 0.29 1.98 5.2 1.08

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

https://archive.ics.uci.edu/ml/datasets/wine
https://archive.ics.uci.edu/ml/datasets/wine

ST 563 model building and data splitting 33

10 1 13.9 1.35 2.27 16 98 2.98 3.15 0.22 1.85 7.22 1.01

... with 168 more rows, and 2 more variables: Abs <dbl>, Proline <int>

classes of wine

table(wines$Class)

##

1 2 3

59 71 48

For this demonstration, we will only consider two predictor vari-
ables, Alcohol and Malic. However, the techniques discussed here-
after can be applied to any number of predictors. Figure 28 shows
the three classes on a scatterplot of Alcohol vs. Malic.

1

2

3

4

5

6

11 12 13 14 15

Alcohol

M
al

ic

Class 1 2 3

Figure 28: Scatterplot of Alcohol vs.
Malic in the wine data.

Let us start with a KNN classifier with K = 30. We can use the
knn() function in the class package, or use caret with method =

"knn". Note that caret does both regression and classification. It
automatically determines the problem depending on whether the re-
sponse is numeric or categorical (factor). We have already converted
the Class variable in the wines data to a factor.

30-NN Classifier / no tuning needed

fit <- train(Class ~ Alcohol + Malic,

data = wines,

method = "knn",

tuneGrid = expand.grid(k = 30),

trControl = trainControl(method = "none"))

fit

k-Nearest Neighbors

##

178 samples

2 predictor

3 classes: ’1’, ’2’, ’3’

##

No pre-processing

Resampling: None

1

2

3

4

5

6

11 12 13 14 15

Alcohol

M
al

ic

Prediction 1 2 3 Class 1 2 3

Figure 29: Decision boundary of 20-NN
classifier of the wines data.

Figure 29 shows the decision boundaries of this classifier.
We can tune K as we did in the regression setting. The code below

searches odd values of K (to avoid ties) for the optimal value with
largest test accuracy. We use 50 times repeated 5-fold CV for tuning –
Figure 30 shows the results.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 model building and data splitting 34

set.seed(1001)

K values for tuning

kgrid <- expand.grid(k = seq(1,51, by=2))

LOOCV tuning

tr <- trainControl(method = "repeatedcv",

number = 5,

repeats = 50)

Train the classifier

fit <- train(Class ~ Alcohol + Malic,

data = wines,

method = "knn",

tuneGrid = kgrid,

trControl = tr)

plot(fit)

#Neighbors

A
cc

ur
ac

y
(R

ep
ea

te
d

C
ro

ss
−

V
al

id
at

io
n)

0.74

0.76

0.78

0.80

0 10 20 30 40 50

Figure 30: Results for repeated 5-fild
CV tuning.

fit$bestTune$k

[1] 21

Refit the model with best K

tuned_knn_class <- train(Class ~ Alcohol + Malic,

data = wines,

method = "knn",

tuneGrid = expand.grid(k = fit$bestTune$k),

trControl = trainControl(method = "none"))

To estimate the prediction error of the tuned model, we can use
any of the methods discussed previously. For example, you can use
bootstrap as the outer loop while the inner loop uses LOOCV for
tuning K.

new_dat <- data.frame(Alcohol = c(13, 12.78),

Malic = c(3,2))

new_dat

Alcohol Malic

1 13.00 3

2 12.78 2
1

2

1

2

3

4

5

6

11 12 13 14 15

Alcohol

M
al

ic

Prediction 1 2 3 Class 1 2 3

Figure 31: Decision boundary of 21-NN
classifier of the wines data with two
new unlabeled points.

We can predict classes of new unlabeled data. Let us consider two
new data points – Figure 31 shows the original data, along with the
two new points (black). We can predict their classes as follows.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 model building and data splitting 35

pred_class <- predict(tuned_knn_class,

newdata = new_dat)

pred_class

[1] 3 2

Levels: 1 2 3

The first point (first row of new_dat) was classified into Class 3, and
second one to class 2. The issue with just obtaining the final pre-
dicted class is that we do not know how sure we are about these
predictions. In addition, we often look at the class probabilities for
each new data. We can specify type = "prob" to do so.

pred_prob <- predict(tuned_knn_class,

newdata = new_dat,

type = "prob")

pred_prob

1 2 3

1 0.1428571 0.04761905 0.8095238

2 0.3809524 0.42857143 0.1904762

Note that for the first point, has as 80% probability associated with
class 3, and hence we are quite confident about out final class pre-
diction of 3. However, for the second point, probabilities associated
with classes 1 and 2 are quite similar (38% vs 43%). So while we are
quite confident about the predicted class of the first data point, there
is some uncertainlty about the second prediction.

Evaluating Predicted Classes

There are many other metrics to evaluate a classification technique
other than error rate and accuracy. The main criticism of these two
criteria are that they provide a global measure, but do not provide
much insight into how individual classes are correctly identified. For
example,80% accuracy of a classifier does not guaranty that it will
correctly classify items form both the classes correctly 80 of times.
Such a criticism is even more relevant when there is class imbalance
in the data: say we have a situation where 80 of observations belong
to class A, and rest in class B. If we employ a classifier that classifies
every point into class A regardless of their predictor values. This classi-
fier will have 80% accuracy! This is called the no information rate (NIR)
of the classification problem.

No information rate (NIR)

The percentage of the largest class in the training set.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 model building and data splitting 36

The NIR represents the accuracy that can be obtained without using
any model. Thus for any classifier, no information rate should be the
minimum accuracy it should have. Any classifier having accuracy
better than NIR might be considered viable.

For a problems with two classes (say “positive” = 1 and “negative”
= 2), most of the measures to evaluate a classifier can be obtained by
cross-tabulating the true and predicted classes of a test set. Such a
table is called confusion matrix. An example is shown in Table 1.

True

Predicted 1 2 -SUM-
1 57 7 7

2 2 64 2

-SUM- 2 7 9

Table 1: Example of a confusion matrix

In general, for a two class problem, the confusion table looks like 2

(I have deleted the -SUM- column/row) .

True

Predicted Positive Negative
Positive True positive (TP) False positive (FP)
Negative False negative (FN) True negative (TN)

Table 2: General confusion matrix for a
two class problem.

Some measures we might look at are as follows:

• sensitivity33 = number of positive cases classified as positive
Total number of positive samples = TP

TP+FN
33 Also called “true positive rate” or
“recall”

• specificity34 = number of negative cases classified as negative
Total number of negative samples = TN

TN+FP
34 Also called “true negative rate”

• Precision = number of positive cases classified as positive
Total number of predicted positive cases = TP

TP+FP

We can also examine:

• Cohen’s kappa:35 measures the agreement of the classifier to the 35 Cohen, Jacob (1960). “A coefficient of
agreement for nominal scales”. Educa-
tional and Psychological Measurement.
20 (1): 37–46.

sample data taking into account any class imbalances, and how
much agreement is by chance. Values close to 1 are considered
good. The R function to do so is cohen.kappa() in psych library.

• McNemar’s test:36 hypothesis test for agreement between the 36 Alan Agresti (1990). Categorical
data analysis. New York: Wiley. Pages
350–354.

predictions from an classifier to the observed data using a Chi-
squared test. The R function to do so is mcnemar.test().

For a multi-class problem, we can create these measures using a
“one-vs-all” approach, that is, by comparing each class vs the remain-
ing combined (class 1 vs not class 1, and so on).

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 model building and data splitting 37

Just for demonstration, let us calculate the above mentioned mea-
sures using the wines data set, that is, the training set.

Confusion matrix and other measures

pred_class <- predict(tuned_knn_class,

newdata = wines)

confusionMatrix(data = wines$Class,

reference = pred_class)

Confusion Matrix and Statistics

##

Reference

Prediction 1 2 3

1 50 1 8

2 5 56 10

3 5 3 40

##

Overall Statistics

##

Accuracy : 0.8202

95% CI : (0.7558, 0.8737)

No Information Rate : 0.3371

P-Value [Acc > NIR] : < 2e-16

##

Kappa : 0.73

##

Mcnemar’s Test P-Value : 0.06792

##

Statistics by Class:

##

Class: 1 Class: 2 Class: 3

Sensitivity 0.8333 0.9333 0.6897

Specificity 0.9237 0.8729 0.9333

Pos Pred Value 0.8475 0.7887 0.8333

Neg Pred Value 0.9160 0.9626 0.8615

Prevalence 0.3371 0.3371 0.3258

Detection Rate 0.2809 0.3146 0.2247

Detection Prevalence 0.3315 0.3989 0.2697

Balanced Accuracy 0.8785 0.9031 0.8115

We should keep in mind that the results might have large bias since
we are using the same data to build our model as well as test it. We
should not put to much emphasis on high accuracy we see here. Ide-
ally, we would create a test set, or perform re-sampling to properly
measure performance.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 model building and data splitting 38

Often, we want a single measure of performance of the classifier
rather than the multitude of measures shown above. There are many
such options, such as Youden’s J Index,

J = Sensitivity + Specificity− 1,

which measures the proportions of correct predictions for both the
positive and negative events.

Evaluating predicted probabilities via ROC curves

Another approach to combine sensitivity and specificity is to inves-
tigate the Receiver Operating Characteristic (ROC) curves. Consider
a two-class classification problem. According to the Bayes rule, we
assign a observation, x, to class 1 if P(Y = 1|X = x) > 0.5, as-
sign to class 2 otherwise. However, is the cutoff 0.5 reasonable all
the time? Sometimes using the default cutoff of 0.5 results in loss of
sensitivity/specificity, and changing the cutoff might increase the
class-specific performance of the classifier. The ROC curve can be
used to determine other cutoff values for class probabilities.

We calculate the ROC by using a set of cutoff values in a contin-
uum. For each of the cutoff values, we calculate the sensitivity (the
true-positive rate) and 1− specificity (the false-positive rate). These
quantities are then plotted against each other. The resulting curve is
the ROC curve. Keep in mind that changing the cutoff values gives
us either more positive or negative classifications – it can not reduce
false positive and false negative simultaneously. Thus for a cutoff, if
sensitivity increases the specificity most likely decreases.

We can use libraries such as pROC, ROCR, caTools, PresenceAbsence,
and many others to produce ROC curve and statistics. Let us con-
sider a two class problem (wines data with only classes 1 and 2).
Figure 32 shows the predicted probabilities of an item belonging to
class 1, that is, P(Y = 1|X) for items of each of the true classes. In
this case, the two distributions do not have much overlap.

Create a two-class problem

wines <- read.table("data/Wines.txt", header = TRUE)

new_wine <- wines %>% filter(Class == 1 | Class == 2)

new_wine$Class <- as.factor(new_wine$Class)

20-NN for demonstration

knn_k20 <- train(Class ~ Alcohol + Malic,

data = new_wine,

method = "knn",

trControl = trainControl(method = "none"),

tuneGrid = expand.grid(k = 20))

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 model building and data splitting 39

Prediction on the training data

pred_wine <- predict(knn_k20,

newdata = new_wine,

type = "prob")

0

10

20

30

40

0.00 0.25 0.50 0.75 1.00

Class probabilities

co
un

t

True class 1 2

Figure 32: Predited class probabilities of
the two classes.

ROC

library(pROC)

library(ggplot2)

roccurve <- roc(response = new_wine$Class,

predictor = pred_wine[,2])

ggroc(roccurve, legacy.axes = TRUE, lwd=2) +

theme_bw(base_size = 18)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

1 − specificity

se
ns

iti
vi

ty

Figure 33: ROC curve of the wine data
with two classes.

Can also use:

plot(roccurve, legacy.axes = TRUE)

A perfect classifier will have both sensitivity and specificity value
1, that is, there will be no misclassification error (perfect separation
between the classes). In contrast, a “random guess” classifier will
distribute the observations into two classes randomly, leading to a
diagonal ROC curve. The corresponding ROC curves are shown in
Figure 34. Thus a classifier can be evaluated based on how close its
ROC curve is to the perfect ROC curve. A single measure is the area
under the ROC curve (AUC). Large AUC values are associated with
better classifier (since the ROC curves are closer to the perfect ROC
curve, which has AUC 1.)

auc(roccurve)

Area under the curve: 0.9813

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

1 − specificity

se
ns

iti
vi

ty

Classifier perfect Ineffective

Figure 34: ROC curve of a perfect and a
completely ineffective classifier.

A disadvantage of AUC is that we lose information about the ROC
curve if we just use AUC. Often, given multiple classifiers, a single
ROC curve might not be uniformly better than all others, and the
curves can cross. Such patterns are suppressed if we only look at
AUC.

We can use ROC curves to visually compare different models.
Such comparisons include investigating different set of covariate in
the same model, choice of different hyperparameters (i.e., comparing
different K values in KNN), or between different classifiers.

Keep in mind, ROC curve and AUC are still statistics, i.e., sum-
maries of the data. As such, we should compute them on the test

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 model building and data splitting 40

set(s) to avoid getting overly optimistic performance due to overfit-
ting.

Summary

In this chapter we discussed the following main concepts.

• K-nearest neighbors methods: regression and classification.

• Evaluation metrics: MSE/RMSE for regression, Accuracy/misclas-
sification error for classification.

• Bias-variance trade-off in relation to model flexibility.

• Irreducible error (regression) and Bayes error rate (classification),
training and test MSE/error.

• Data splitting methods: Holdout, V-fold CV, Leave-One-Out CV,
Bootstrap.

• Hyperparameter tuning methods.

• Test error estimation methods.

We have used R packages caret and rsample for the most parts.
Many of the plots used in this chapter were created using ggplot2

package (code not shown).

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

	Introduction
	K-Nearest Neighbors Regression
	Data splitting
	K-Nearest Neighbors Classification
	Summary

