
A Brief introduction to R
Arnab Maity

NCSU Statistics ~ 5240 SAS Hall ~ amaity[at]ncsu.edu

Contents

R and RStudio 2

Basic data types in R 2

Variable names and assignment operator 2

Asking for help 3

Basic operations 3

Relational operations 4

Vectors 4

Atomic vectors 5

Vector (numeric) operations with R 5

Lists 8

Matrices 10

Data frames 14

Control flow 16

Functions 16

ST 563 a brief introduction to r 2

R and RStudio

The software R is free to download from the The Comprehensive R
Archive Network (https://cran.r-project.org/). I also encourage
you to download RStudio, an integrated development environment,
for efficient coding. RStudio is available from https://www.rstudio.

com/ for free.

Basic data types in R

R has the following six basic data types.

• Character: such as names like "Arnab",
• Numeric: integer and double, e.g., 1L, 2 or -3.9,1 1 The specification 1L explicitly tells

R that it is an integer. But 2 is in fact
stored as a double.

• Logical: Boolean data, TRUE, FALSE and NA,
• Complex: numbers such as 1 + 2i,
• Raw: holds raw bytes.

The Raw data type does not come up in most scenarios we en-
counter in standard programming, and will not be discussed further.

Variable names and assignment operator

Often we need to store our data with a name so that we can use
them later. We use assignment operator <- to do so. For example, the
command x <- 2 assigns2 the the value 2 to the name x . 2 The command x = 2 also works.

However, the = sign is also used to
specify function arguments.

numeric data

number <- 2

print(number)

[1] 2

character

name <- "Arnab"

print(name)

[1] "Arnab"

Logical

bool <- TRUE

print(bool)

[1] TRUE

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

https://cran.r-project.org/
https://www.rstudio.com/
https://www.rstudio.com/

ST 563 a brief introduction to r 3

Notice that the assignment bool <- TRUE, we did not put quota-
tion marks around TRUE. This is because TRUE is a Boolean constant,
not a character string.3 3 What would be the result of the

assignment bool <- "TRUE"? What type
of variable would bool be then?

You can see the type of a variable by using the command typeof,
as follows.

typeof(number)

[1] "double"

typeof(bool)

[1] "logical"

Asking for help

You can view the help page/documentation for any object in R, if
such a page is available, by using the ? or help() command. It is
particularly useful for complicated functions. Always view the docs
of any functions that are new to you.

We have seen the use of print() and typeof() in the previous
sections. Try issuing the commands ?print and ?typeof to see what
happens. Try ?help.

Basic operations

At the least, you can you R as a calculator. It performs basic arith-
metic operations for numeric data:

• +, -, * and \ for addition, subtraction, multiplication and division,
respectively.

• ˆ for exponentiation, %% for remainder from division and %/% for
integer division.4 4 While %% and %/% can be used for

non-integer values, the results may vary
in different platforms since they are
susceptible to representation error.

Other mathematical functions such as exponential exp(), natural
logarithm log(), trigonometric function sin(), cos() etc. are also
available.

x <- 2

y <- 3

x + y

[1] 5

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 a brief introduction to r 4

xˆ2

[1] 4

cos(pi*x/2)

[1] -1

Notice that, in the last command, we used pi. Constants such as
pi are pre-defined in R.

Relational operations

R has the usual relational operations available:

• <, <=, > and >= for less than, less than or equal to, greater than,
greater that or equal to, respectively.

• == and != for equal to and not equal to, respectively.

Each of these operations returns TRUE/FALSE value.

numeric data

x <- 2

y <- 3

x == y

[1] FALSE

x != y

[1] TRUE

x <= y

[1] TRUE

Character data

"Arnab" == "Maity"

[1] FALSE

Vectors

Vectors are one of the most imortant data structures in R. It is very
important that we understand how to create, manipulate, and per-
form computations using vectors to be effective R users. There are
two types of vectors in R: atomic vector and list.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 a brief introduction to r 5

Atomic vectors

Atomic vectors is a collection of elements of the same type. You can
create such vectors using the c() function in R. For example, shown
below is a atomic vector containing double data type.

dbl_vec <- c(1.2, 3, -5.9)

dbl_vec

[1] 1.2 3.0 -5.9

Thus atomic vectors can be of any of the basic data types (integer,
double, character etc.) discussed above. Even though the vector is
printed in a row, by default, a vector behaves as a column vector.

If we attempt to put multiple data types in the same vector, they
will be coerced to the most flexible type automatically.

multi_vec <- c(23.5, "Arnab", TRUE)

multi_vec

[1] "23.5" "Arnab" "TRUE"

Note that the double and the logical elements of multi_vec were
converted to characters.

Vector (numeric) operations with R

In this course, we will mainly deal with numeric vectors when per-
forming data analysis. A vector is an array of numbers. Specifically,
we will write

x =


x1

x2
...

xp


and call it a column vector. We often write x ∈ Rp. Similarly, a row
vector is written as

xT = (x1, x2, . . . , xp).

Note that the notation xT denotes “transpose’ ’ of x.5 5 Note: In this course, we will always
take a vector as a column vector by
convention, and will always use the
transpose to denote a row vector. Thus
the statement “a is a vector” will imply
that “a is a column vector.”

The usual vector operations in linear algebra can be done on these
vectors. For two vectors a, b ∈ Rp, the sum is defined as6

6 Similarly, the difference is defined as

a− b =


a1 − b1
a2 − b2

...
ap − bp


a + b =


a1 + b1

a2 + b2
...

ap + bp

 ,

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 a brief introduction to r 6

that is, a vector of same dimension as of a and b, where each element
is the sum of corresponding elements of a and b.

Consider the two vectors as follows.7 7 Note that to add (or subtract) a and b,
the two vectors have to have the same
number of elements.

a = c(5.1, 4.9, 4.7, 4.6, 5.0)

b = c(3.5, 3.0, 3.2, 3.1, 3.6)

Their sum is:

a + b

[1] 8.6 7.9 7.9 7.7 8.6

Their difference is:

a - b

[1] 1.6 1.9 1.5 1.5 1.4

A vector a can be multiplied by a scalar k by simply multiplying
each element of a by k:

ka = k


a1

a2
...

ap

 =


ka1

ka2
...

kap


In R, we can use the * operator:8 8 We can similarly divide a vector by a

scalar by using the / operator.

a

[1] 5.1 4.9 4.7 4.6 5.0

2*a

[1] 10.2 9.8 9.4 9.2 10.0

Multiplication between two vectors is a little more involved. Here
we need to define the inner product of two vectors. For two vectors
a, b ∈ Rp, the inner product is defined as:

〈a, b〉 = aTb =
(

a1 a2 . . . ap

)


b1

b2
...

bp

 = a1b1 + a2b2 + . . .+ apbp =
p

∑
j=1

ajbj.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 a brief introduction to r 7

Note that the result is a scalar. As an example, suppose aT = (1, 0, 2, 5)

and b =


2
3
1
6

. Then we have

aTb =
(

1 0 2 5
)
×


2
3
1
6

 = (1× 2)+ (0× 3)+ (2× 1)+ (5× 6) = 34

In R, we can use the %*% operator to compute the inner product (or
matrix multiplication in general). In this example9 9 Note: Be careful to use %*%. Be sure

to put the % signs properly. Just using
* without the % signs would give you
elementwise product:

a ∗ b =


a1b1
a2b2

...
apbp

 .

In matrix algebra this is referred to as
Hadamard product.

a <- c(1, 0, 2, 5)

b <- c(2, 3, 1, 6)

t(a) %*% b

[,1]

[1,] 34

Other operations such as exponentiation by a scalar, log(), etc are
done element wise on a vector.

vec_one <- c(1,2,3)

vec_two <- c(4,5,6)

log transform

log(vec_one)

[1] 0.0000000 0.6931472 1.0986123

We can access element of a vector by using the [operator. For ex-
ample, to access the first element of vec_one we will use vec_one[1].

vec_one[1]

[1] 1

We can assign specific values to elements using [and <- together.

vec_one[2] <- 31

vec_one

[1] 1 31 3

It is possible, and often desirable to create named vectors, that is, a
vector which has names for each element.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 a brief introduction to r 8

vec_named <- c(math = 91, engligh = 85, history = 99)

vec_named

math engligh history

91 85 99

For such a vector, we can refer/assign to its elements by both
index and name.

vec_named[1]

math

91

vec_named["math"]

math

91

See also the names() function.

Lists

Lists are vectors that can hold different types of elements, unlike
atomic vectors. We can create a list using the list() function.

my_list <- list(number = 23,

name = "Arnab",

is_student = FALSE)

my_list

$number

[1] 23

##

$name

[1] "Arnab"

##

$is_student

[1] FALSE

We can access element of a list either by its name, if they exist (in
the example above, the names are number, name and is_student) with
$ operator, or using their index with [[operator. Assignment of new
values can be done the same way with <-.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 a brief introduction to r 9

Access elements

my_list$number

[1] 23

my_list[[2]]

[1] "Arnab"

value assignment

my_list$number <- 50 # changing existing element

my_list$new_data <- -23 # adding a new element

my_list

$number

[1] 50

##

$name

[1] "Arnab"

##

$is_student

[1] FALSE

##

$new_data

[1] -23

Lists are quite verstile, and can hold other data structures as well.
For example, a list can hold other vectors, lists, matrices etc as well.

big_list <- list(vec = c(1,2,3),

lst = list("Arnab", FALSE, 34),

num = 45,

long_lst = list(a = 1, b = list(4,5))

)

big_list

$vec

[1] 1 2 3

##

$lst

$lst[[1]]

[1] "Arnab"

##

$lst[[2]]

[1] FALSE

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 a brief introduction to r 10

##

$lst[[3]]

[1] 34

##

##

$num

[1] 45

##

$long_lst

$long_lst$a

[1] 1

##

$long_lst$b

$long_lst$b[[1]]

[1] 4

##

$long_lst$b[[2]]

[1] 5

Lists are used to build other complicated data structures, such as
data frames, which we discuss later.

Matrices

Like atomic vectors, a matrix (2D arrays) can hold only one type
of data. We can create matrices by using the matrix() function, or
binding multiple vectors by rows or columns using the rbind() or
cbind() functions, respectively.

matrix_one <- matrix(1:6, nrow = 2, ncol = 6)

matrix_one

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 3 5 1 3 5

[2,] 2 4 6 2 4 6

cbind(vec_one, vec_two)

vec_one vec_two

[1,] 1 4

[2,] 31 5

[3,] 3 6

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 a brief introduction to r 11

rbind(vec_one, vec_two)

[,1] [,2] [,3]

vec_one 1 31 3

vec_two 4 5 6

We can access the elements with the [operator. For matrices
we need two indices (one for row and the other for column). Thus
matrix_one[2, 3] will refer to the element in 2nd row and 3rd col-
umn.

matrix_one[2, 3]

[1] 6

Transposing matrices involves turning the first column into the
first row, second column into second row and so on. We write MT as
the transpose of M.

We can use t() to take a transpose in R:

Mt = t(matrix_one)

Mt

[,1] [,2]

[1,] 1 2

[2,] 3 4

[3,] 5 6

[4,] 1 2

[5,] 3 4

[6,] 5 6

Addition and subtraction of matrices can be done if the matrices
have the same size. The sum of two matrices A and B (of same size) is
another matrix (of the same size) where each element is the sum of
the corresponding elements of A and B.

A = cbind(c(0.71, 0.61, 0.72, 0.83, 0.92),

c(0.63, 0.69, 0.77, 0.80, 1.00))

A

[,1] [,2]

[1,] 0.71 0.63

[2,] 0.61 0.69

[3,] 0.72 0.77

[4,] 0.83 0.80

[5,] 0.92 1.00

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 a brief introduction to r 12

B = matrix(c(1,2,3,4,5,6,7,8,9,10),5,2)

B

[,1] [,2]

[1,] 1 6

[2,] 2 7

[3,] 3 8

[4,] 4 9

[5,] 5 10

Summing two matrices

A + B

[,1] [,2]

[1,] 1.71 6.63

[2,] 2.61 7.69

[3,] 3.72 8.77

[4,] 4.83 9.80

[5,] 5.92 11.00

Subtracting

A - B

[,1] [,2]

[1,] -0.29 -5.37

[2,] -1.39 -6.31

[3,] -2.28 -7.23

[4,] -3.17 -8.20

[5,] -4.08 -9.00

Matrix addition satisfies the usual commutative and associative
laws.

Commutative law: A + B = B + A

Associative law: A + (B + C) = (A + B) + C

Multiplication of a matrix by a scalar is done by simply multiplying
every element in the matrix by the scalar. So if k = 0.4, and

A =

(
1 5 8
1 2 3

)
,

we can calculate kA as:

kA = 0.4×
(

1 5 8
1 2 3

)
=

(
0.4 2 3.2
0.4 0.8 1.6

)
.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 a brief introduction to r 13

Matrix multiplication however follows vector multiplication, and
therefore does not follow the same rules as basic multiplication. To
multiply two matrices A and B, one must first check that the number
of columns in A is exactly the same as the number of rows in B. Otherwise,
we can not multiply these two matrices. More generally,

Am×n × Bn×p = Cm×p.

Let A be of size m×n; represent A using its row vectors aT
1 , aT

2 , . . . , aT
m.

Let B be of size n× p; represent B using its columns vectors b1, b2, . . . , bp.
The multiplication operation for matrices is defined as:

AB =


aT

1
aT

2
. . .
aT

m

(b1 b2 . . . bp

)
=


aT

1 b1 aT
1 b2 . . . aT

1 bp

aT
2 b1 aT

2 b2 . . . aT
2 bp

...
...

...
aT

mb1 aT
mb2 . . . aT

mbp


Thus, (i, j)-th element of AB is the inner product of i-th row of A and
j-th column of B.

Consider the following example.

A = cbind(c(0.71, 0.61, 0.72, 0.83, 0.92),

c(0.63, 0.69, 0.77, 0.80, 1.00))

A

[,1] [,2]

[1,] 0.71 0.63

[2,] 0.61 0.69

[3,] 0.72 0.77

[4,] 0.83 0.80

[5,] 0.92 1.00

B = matrix(c(1,2,3,4,5,6,7,8,9,10),2,5)

B

[,1] [,2] [,3] [,4] [,5]

[1,] 1 3 5 7 9

[2,] 2 4 6 8 10

Here A has 2 columns and B has two rows, and hence we can multi-
ply A with B. In R, we only need to use the %*% operator to ensure we
are getting matrix multiplication:

C = A %*% B

C

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 a brief introduction to r 14

[,1] [,2] [,3] [,4] [,5]

[1,] 1.97 4.65 7.33 10.01 12.69

[2,] 1.99 4.59 7.19 9.79 12.39

[3,] 2.26 5.24 8.22 11.20 14.18

[4,] 2.43 5.69 8.95 12.21 15.47

[5,] 2.92 6.76 10.60 14.44 18.28

Just to check, look at C23, the (2, 3)-th element of C.

C23 = 7.19 = (0.61, 0.69)

(
5
6

)
= (5× 0.61) + (6× 0.69) = 7.19.

You will get an error message if you multiply non-conformable
matrices.10 10 Dimesion of B is 2× 5 but dimension

of t(A) is 2 × 5. Thus number of
columns in B is not the same as number
of columns in t(A).B %*% t(A)

Error in B %*% t(A): non-conformable arguments

Unlike addition, matrix multiplication is not commutative:

(non-commutative) AB 6= BA

Associative law A(BC) = (AB)C

The distributive laws of multiplication over addition still apply.

A(B + C) = AB + AC

(A + B)C = AC + BC

We have the following rules for transposes.

(A + B)T = AT + BT

(AB)T = BTAT

Other functions such as inverse, determinant, eigen decomposi-
tion, SVD etc are also available, when appropriate, using the func-
tions solve(), det(), eigen(),svd(), respectively. There are many
more functions related to matrices in R. We leave the reader to ex-
plore as needed.

Data frames

When we work with real data, atomic vectors and matrices may
not be enough to store them if the data set contains different data
types, such as numbers, characters, factors etc. R has a useful data

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 a brief introduction to r 15

structure, which is built upon list, called a data frame. A data frame
can have different columns holding different data types.

We can create a data frame using the data.frame() function.

df <- data.frame(name = c("Arnab", "Ana"),

grade = c(80, 93),

is_graduate = c(FALSE, TRUE)

)

df

name grade is_graduate

1 Arnab 80 FALSE

2 Ana 93 TRUE

Notice that, in a data frame, each column must have the same
number of elements.

A data frame has name for each row (accessed os set using rownames()),
and names for each column (accessed/set by colnames().

rownames(df)

[1] "1" "2"

colnames(df)

[1] "name" "grade" "is_graduate"

We can check the size of a data frame by using the dim() func-
tion. The functions nrow() and ncol() give us number of rows and
columns, respectively.

dim(df)

[1] 2 3

ncol(df)

[1] 3

We can access columns of a data frame by either index (df[,1])
or by name (df["name"] or df$name). Row can be accessed by index
(df[1,]). We can put mulpliple rows and columns as well.

df[c(1,2), c("name", "grade")]

name grade

1 Arnab 80

2 Ana 93

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 a brief introduction to r 16

Control flow

Often we encounter situations where we need to perform a task if
a condition is satisfied (e.g., if numeric grade is greater than 70, set
letter grade to “S”, otherwise set letter grade to “U”). Such opera-
tions can be done using the if / else statement. The basic form of
if/else statement is:

if(condition) task_one else task_two

Here condition is a Boolean variable. If condition is TRUE, then
task_one executes. Otherwise, task_two executes.

numeric_grade <- 85

letter_grade <- NA

if(numeric_grade > 70){

letter_grade <- "S"

} else {

letter_grade <- "U"

}

letter_grade

[1] "S"

The condition in the if statement has to be a scalar. If we supply a
vector valued condition, only the first element would be used.

Functions

Often we want to repeat a specific algorithm/set of steps multiple
times. Rather than copying and pasting the same piece of code multi-
ple times, it is recommended to write a function. Just like mathemat-
ics, a function will have a set of input arguments and a set of output.
We have already seen the print(), typeof() and t() functions.

As an example, suppose we want to write a function that takes a
vector x and returns $sin(1 / xˆ2)$. The following function does
the job.

my_fun <- function(x){

res <- sin(1/xˆ2)

return(res)

}

Let us analyze the code above. The my_fun piece is simply what we
named our function. The function keyword defines the function
with the arguments provided in the parentheses (i.e, x). The code

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

ST 563 a brief introduction to r 17

within { and } is the body of the function that does the the actual
computation. It creates a new variable res that stores sin(1/x2), and
then returns the value. 11 11 We could have just used

return(sin(1/xˆ2)).Let’s call the function for a specific value of x.

y <- 2

my_fun(y)

[1] 0.247404

x <- c(1,2,3)

my_fun(x)

[1] 0.8414710 0.2474040 0.1108826

Notice that the function works with a single number as its ar-
gument as well as a vector argument. This is because the code
sin(1/xˆ2) works when x is a vector with element-wise operations.

More complicated functions are also possible and often needed.
Try practicing by writing a function that takes a matrix X and a vec-
tor y, and outputs the vector (XTX)−1XTy.

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu

	R and RStudio
	Basic data types in R
	Variable names and assignment operator
	Asking for help
	Basic operations
	Relational operations
	Vectors
	Control flow
	Functions

