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What is statistical learning?

Statistical learning refers to a vast set of tools for understanding data.

— Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani,
An Introduction to Statistical Learning, second edition, 2021, page 1.

Statistical learning1 has become immensely useful in many fields 1 There is a never-ending debate about
whether statistical learning and data-
driven machine learning are synony-
mous or not or if one is a subset of
the other etc. We will not go into that
debate in this course.

of study and is being used to develop-cutting edge technologies.
Simply speaking, statistical learning is used to discover patterns
and relationships within data – these patterns then enable learning
algorithms to make predictions/decisions based on new data.

There is one critical difference between classical programming
and statistical learning. In classical programming, we have a data set
we want to analyze, and we have a set of rules that dictates how we
should process the data. The program takes these two inputs and
provides an answer. For example, in Figure 1, we have handwriting
samples (the images) as input data. We want to classify the images
into their corresponding digits. Thus, we have to explicitly supply
the rules to the program for the classification process (top figure).
This setup is an example of classical programming, where the algo-
rithm needs to know what features of the image to look at explicitly –
it just acts as automation and does not “learn.”

Figure 1: Comparison between classical
programming versus maching learning
algorithms.

In contrast, machine learning (bottom plot in Figure 1) solves the
opposite problem. A machine learning algorithm takes the input data
and the corresponding answers and determines the rule that mapped
the data to the answers. In our example, a machine learning algo-
rithm takes the images and the true digits and determines the rules
to map the images to the correct digits. The algorithm “learns” the
rules without them being pre-specified. In other words, a machine
learning algorithm is “trained,” not explicitly programmed.

Machine learning arises from this question: could a computer go beyond
“whatever we know how to order it to perform” and learn on its own how
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to perform a specified task? Could a computer surprise us? Rather than
programmers crafting data-processing rules by hand, could a computer auto-
matically learn these rules by looking at data?

— F. Chollet and J. J. Allaire, Deep Learning with R, 2018, page 5.

Let us introduce some notations and ideas before proceeding fur-
ther. We will use the following terminology and symbols throughout
this course:

• Predictor variable: X – These are also called independent vari-
ables, covariates, features, attributes, predictors.

• Response variable: Y – Also known as dependent variable, target
variable, response, outcome.

Typically, we index the units/items/individuals in our sample by
i. If we have n units in our sample, we denote the response and the
predictor for the i-th unit as Yi and Xi, respectively, for i = 1, . . . , n.
In the image classification example shown in Figure 1, Xi represents
the i-th input image, and Yi represents the corresponding digit.

Labeled and Unlabeled Data

Labeled data: data where both X and Y are present. Here Y
are regarded as "labels".

Unlabeled data: data where only X present.

Ideally, there is a function/map f (·) that, maps Xi to Yi. Often
there are also errors involved (e.g., in a regression model we might
have Yi = f (Xi) + εi with εi being random error). Estimation of
f (·) is a goal of statistical learning. In Figure 1, f (·) represents the
unknown rules. The estimated f (·) will be denoted as f̂ (·).

Benefits of statistical learning

In statistical learning, the reason for estimation of f (·) are two-fold.

• Prediction: we can predict the response for a new value of X based
on the estimated f (·). Specifically, for a new data point with pre-
dictor X, we can form the prediction Ŷ = f̂ (X). In this case,
prediction is the primary goal – we do not necessarily worry about
interpretability of the model or the actual functional form of f (·).

• Inference: often we want to understand the relationship between a
response Y and a set of predictors X1, . . . , Xp. In this case, predic-
tion of Y is not the primary goal – we want a deeper understand-
ing of the relationship itself. Questions such as “which predictors
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are associated with Y?”, “How is each of the predictors related to
Y?”, and “Are all predictors are of equal importance in relation to
Y?” are of interest.

Depending on whether our priority lies in prediction, inference,
or sometimes both, we will use different learning methods. Typically,
simpler methods, such as linear models, are often more interpretable
and lend themselves well to statistical inference. More complicated
procedures such as deep learning, bagging, boosting are mainly used
to build prediction models but are not very interpretable. Figure 2

shows a representation of the tradeoff between model flexibility and
interpretability.2 2 Figure and caption taken from In-

troduction to Statistical Learning, 2nd
edition, by Hastie et al., 2021.
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Figure 2: A representation of the trade-
off between flexibility and interpretabil-
ity, using different statistical learning
methods. In general, as the flexibility of
a method increases, its interpretability
decreases.

Overview of model building

Statistical models

A statistical learning method “learns” about the “rules” is to build
statistical models for the observed data. The components of these
models are then estimated using appropriate algorithms.

Statistical model

A mathematical specification/formulation that we use to
describe the observed data.

Typically, a statistical model is specified by a collection of probability
distributions on the observed data and specifying some assumptions
on the functional from of f (·). For example, suppose we have re-
sponse Y and a single predictor X. Consider the polynomial regression
model,

Yi = β0 + Xiβ1 + · · ·+ Xd
i βd + εi,

where d is a non-negative integer, β0, . . . , βd are unknown weights,
and εi ∼ N(0, σ2) are independent unobservable random errors. Here
we have Yi|Xi ∼ N(β0 + Xiβ1 + · · ·+ Xd

i βd, σ2).
The example above assumes that f (X) = β0 + Xβ1 + · · ·+ Xdβd.

Thus the function f (·) is fully characterized by d + 1 many weights
β0, . . . , βd. The model itself is fully characterized by β0, . . . , βd, and
σ2. These quantities can be estimated from the data, and are called
parameters, and these models are called parametric models.

Parametric models have the advantage of being interpretable, and
computationally easier to fit. However, they are often inadequate to
capture the true f (·). Instead, we can choose not to such parametric
assumptions, and let f (·) be flexible.3 Such models are called non- 3 We do still need to make some as-

sumptions of f to prevent severe
overfitting of the data. In spline fitting,
for example, we often assume f has
certain number of derivatives to ensure
smoothness of f .

parametric models. These models have the potential to fit complicated
functions. The disadvantage of nonparametric models are that they
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are computationally expensive, and require larger sample size to
produce accurate estimate of f (·).

Note that the models are not to be taken as absolute truth. At best,
a model can be only an approximation of the original data generating
process.

All models are wrong; some models are useful.

— George E. P. Box, William Hunter and Stuart Hunter, Statistics for
Experimenters, second edition, 2005, page 440.

Parameters vs. Hyperparameters

We will discuss many learning methods that have hyperparameters:
these quantities control the model complexity. Hyperparameters are
not estimated from the data, rather they need be “tuned” for better
performance of the learning method.

Parameters/Hyperparameters

Parameters – are estimated from the data via fitting the
model.

Hyperparameters – control the model complexity and are not
estimated; rather, they are tuned based on model performance.

Consider, for example, the polynomial regression model,

Y = β0 + Xβ1 + ·+ Xdβd + ε,

where d is a non-negative integer. Here the degree of the polynomial,
d, is set by the user4. The quantity d is not estimated from the data 4 For instance, d = 1 results in a simple

linear regression– it is tuned by user based on some performance criterion. Here d
is a hyperparameter. In contrast, once d has been set, the quantities
β0, . . . , βd are estimated from the data so that the polynomial best fits
the data. Thus β0, . . . , βd are parameters in this model.

Ideally, we will choose a value of hyperparameter, over all possible
values the hyperparameter can take, that gives the best performance
of the learning method.5 In more computationally expensive algo- 5 We will learn about how to measure

model performance in future chapters.rithms, however, such an exhaustive search might not be possible,
and we might need to try out a few values of the hyperparameter
and choose the best among these values. Some possible options for
tuning hyperparameters are as follows:

• Grid search: search over a (fine) grid of possible hyperparameter
values – computationally expensive.

• Random grid search:6 search over a set of randomly chosen values 6 Bergstra, James, and Yoshua Bengio.
2012. “Random Search for Hyper-
Parameter Optimization.” Journal of
Machine Learning Research 13 (Feb):
281–305.

from all possible values.
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• Early stopping: stopping the tuning process when the improvement
of model performance becomes negligible.

• Adaptive resampling:7 adaptively resamples candidate values based 7 Kuhn, Max. 2014. “Futility Analysis
in the Cross-Validation of Machine
Learning Models.” arXiv Preprint
arXiv:1405.6974.

on near optimal model performance.

There are many more options in literature (e.g, Bayesian tuning
using Gaussian process) etc., we will use various tuning methods
throughout the course.

Training/Testing the model

The process of tuning the hyperparameter(s) and estimating the
model parameters are often done iteratively to tune the hyperparam-
eters. This process is called training the model.

Ideally, we would have two separate data sets - one for training the
model, and one for testing the model performance.

Training and Testing sets

Training set: the data set used to train learning methods.
Tasks performed using this data include tuning hyperparam-
eters, estimating model parameters, comparison of several
learning methods, development of features and so on.

Test set: the data set used to produce unbiased estimate of the
performance of the final model chosen using the training set.

In reality, we often have only one data set available, and as such need
to create our own training and test sets. This is done by randomly
splitting the data in two parts, say a smaller part containing 20% of
the data to be used as the test set, and the remaining 80% to be used
as the training set. We will briefly discuss the following sampling
techniques in later chapters:

• Simple random sampling (with or without replacement): randomly
select a few units from the data.

• Stratified sampling: used when data contain groups (e.g., “Yes”/“No”)
that are imbalanced. Stratified sampling is used to ensure that the
test set has similar group size ratio as the original data.

• Up-sampling and down sampling methods, or a combination of both:
used when there is severe group size imbalance (e.g., 95% “No”
and 5% “Yes”). In this case, sampling is done by over-representing
the rare group, or under-representing the abundant group, or a
combination of both, e.g., SMOTE.8 8 Synthetic Minority Over-Sampling

Technique by Chawla, et al. (2002), Jour-
nal of Artificial Intelligence Research 16:
321–57.
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It is extremely important that we do not use the test set in the
training phase at all.

Locking down the test set

Do not use the test set of any part of the test set for training
the model. This includes the tuning of hyperparameters as
well. The test set should be used only after we have chosen
the final model using the training set.

Using the test set to evaluate model performance during the training
phase would effectively include the test set in model training. So
when we measure the performance of the final model using the test
set, it may result in overfitting since we have already used the test set
to build the final model.

With us locking down the test set, we need to think about how to
tune hyperparameter(s) to obtain the model with best performance
metric. One possible way is to use the training set itself to fit the
model and evaluate the performance. However, such a strategy has
the same drawback as before: the model might give an overly opti-
mistic performance metric on the training set, but in reality might
not perform well in general. To this end, we will learn about three
approaches we can use:

• Holdout method: We split the training set further in a holdout set9 9 Sometimes also called a validation set.

(used for model evaluation) and the remaining used for fitting the
model.

• v-fold cross validation: We randomly divide the data in v roughly
equal sized parts (called folds). We then designate one fold as the
validation set, and the remaining v− 1 folds combined as training
set. This procedure is then repeated for each of the v folds.

• Bootstrap: We take random samples from the training set with re-
placement of the same size as the training set (each of these samples
is called a bootstrap sample). The observations that are no contained
in the bootstrap sample10 are used as validation set, while the 10 Also called out-of-bag (OOB) samples.

bootstrap sample is used for model fitting.

There are other resampling techniques that can be applied in var-
ious specific situations such as when we have dependent data (e.g.,
time series) or small sample sizes (where bootstrap might have biased
results). We will not go into details about these approaches.
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Supervised learning

Learning methods can be broadly categorized into the three types:
supervised, unsupervised and semi-supervised learning. In this sec-
tion, we discuss about supervised learning. The other two categories
will be discussed in the next two sections.

The example discussed in Figure 1 and subsequent discussions
were mainly geared towards supervised learning methods. These
type of tasks have labeled data11 as input, and outputs a prediction 11 Labeled data have both predictor, X,

and response variable, Y, available in
the data.

rule, f̂ (·). The estimated function can then be used to form predic-
tions for a new unlabeled data.

Figure 3: Outline of supervised statisti-
cal learning.

Examples of such tasks as regression and classification problems. The
distinction between these two types is based on the nature of the
outcome variable, Y: regression problems deal with numeric Y, while
classification problems involve categorical Y.

Regression problems

When a supervised learning deals with problem with a numeric re-
sponse, we call such a problem a regression problem.

Let us consider the mpg dataset12 available in the ggplot2 library. 12 The mpg data is a subset of
data that EPA makes available at
https://fueleconomy.gov/ – see the
documentation of mpg for details.

The dataset contains fuel economy data from 1999 to 2008 for 38

popular cars. A snapshot of the data is shown below.

## # A tibble: 234 x 11

## manufacturer model displ year cyl trans drv cty hwy fl class

## <chr> <chr> <dbl> <int> <int> <chr> <chr> <int> <int> <chr> <chr>

## 1 audi a4 1.8 1999 4 auto~ f 18 29 p comp~

## 2 audi a4 1.8 1999 4 manu~ f 21 29 p comp~

## 3 audi a4 2 2008 4 manu~ f 20 31 p comp~

## 4 audi a4 2 2008 4 auto~ f 21 30 p comp~

## 5 audi a4 2.8 1999 6 auto~ f 16 26 p comp~

## 6 audi a4 2.8 1999 6 manu~ f 18 26 p comp~

## 7 audi a4 3.1 2008 6 auto~ f 18 27 p comp~

## 8 audi a4 quattro 1.8 1999 4 manu~ 4 18 26 p comp~

## 9 audi a4 quattro 1.8 1999 4 auto~ 4 16 25 p comp~

## 10 audi a4 quattro 2 2008 4 manu~ 4 20 28 p comp~

## # ... with 224 more rows

Introduction to Statistical Learning Dr. Arnab Maity, NCSU Statistics 5240 SAS Hall, amaity[at]ncsu.edu
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Suppose we are interested in predicting a car’s highway mileage per
gallon (hwy variable) based on the car’s engine displacement in litres
(displ variable). Here the outcome, hwy, is a numeric variable, and
thus this is a regression problem. A scatterplot of hwy vs displ is
shown in Figure 4 along with a linear and a nonparametric regres-
sion fit.
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Figure 4: Scatterplot of highway miles
per gallon vs. engine displacement
(litres). Also shown are a simple linear
regression fit and estimated nonpara-
metric regression line.

Here we have fitted two models, one linear and the other nonpara-
metric. In particular, the regression models are as follows:

Linear model: Yi = β0 + β1Xi + εi,

Nonparametric model: Yi = f (Xi) + εi,

where εi ∼ N(0, σ2) are independent random errors. We used cubic
splines13 for the nonprametric fit. Note that, since the errors have zero 13 We will learn about splines in our dis-

cussion of various regression techniques
in later chapters. In a nutshell, cubic
splines are piece-wise cubic polynomi-
als used to interpolate the data while
also ensuring that the resulting fit is
smooth.

mean, the lines effectively represent E(Y|X) as a function of X:

Linear model: E(Yi|Xi) = β0 + β1Xi,

Nonparametric model: E(Yi|Xi) = f (Xi).

In this particular data, the regression lines represent how the mean
highway mileage changes as function of engine size.

Regression problems are not exclusive to continuous outcomes
like highway miles per gallon in the previous example. Regression
problems might have other type numeric data such as count data.
Consider the data Bikeshare in the ISLR2 library, which contains
hourly and daily rental of bikes in Capital bikeshare system between
the years 2011 and 2012. The data set also contains weather and
seasonal variables.14 A snapshot of the data is shown below. 14 See ?Bikeshare for details.

## # A tibble: 6 x 15

## season mnth day hr holiday weekday workingday weathersit temp atemp

## <dbl> <fct> <dbl> <fct> <dbl> <dbl> <dbl> <fct> <dbl> <dbl>

## 1 1 Jan 1 0 0 6 0 clear 0.24 0.288

## 2 1 Jan 1 1 0 6 0 clear 0.22 0.273

## 3 1 Jan 1 2 0 6 0 clear 0.22 0.273

## 4 1 Jan 1 3 0 6 0 clear 0.24 0.288

## 5 1 Jan 1 4 0 6 0 clear 0.24 0.288

## 6 1 Jan 1 5 0 6 0 cloudy/misty 0.24 0.258

## # ... with 5 more variables: hum <dbl>, windspeed <dbl>, casual <dbl>,

## # registered <dbl>, bikers <dbl>

Suppose we want to predict the number of bike rentals (bikers)
using temperature (temp). We should note that bikers can only take
non-nagative integer values. Thus a linear regression model might
not be a satisfactory models here since it does not ensure that the
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response is integer. One possibility here is to employ a Poisson regres-
sion model, which assumes

Yi|Xi ∼ Poisson{λ(Xi)}, with E(Yi|Xi) = λ(Xi).

Since Yi can not be negative, its expected value conditional on Xi,
λ(Xi), has to be non-negative as well. In Poisson regression, we can
ensure non-negative λ(X) by using the following model:

log{λ(Xi)} = β0 + Xiβ1, or equivlently λ(Xi) = exp(β0 + Xiβ1).

A scatterplot of number of bike rentals vs. temperature, and the
estimated mean number of bike rentals via Poisson regression in
shown in Figure 5. 0
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Figure 5: Scatterplot of number of
bike rentals vs. temperature overlayed
with estimated mean bike rentals as a
function of temperature.

The model shown here is far from the optimal model in this situ-
ation, and is only shown as a proof of concept. In a proper analysis,
one might explore more predictor variables and their relationship
with the response.

The two examples shown above are special cases of generalized
linear model. Recall that we have modeled the conditional mean of Y
given X, or the log-transform of the same, as a linear function of X:

Linear regression: E(Y|X) = β0 + Xβ1

Poisson regression: log{E(Y|X)} = β0 + Xβ1

Also we assumed that Y follows certain distributions:

Linear regression: Y follows a normal distribution

Poisson regression: Y follows a Poisson distribution

In general, we can assume that Y follows a distribution in a certain
class of distributions called the exponential family, and the conditional
mean of Y has the form

g{E(Y|X)} = β0 + Xβ1,

where g(·) is a known function, called a link function. This model is
called a generalized linear regression model (GLM). Both linear and
Poisson regression models are GLMs. There are many other GLMs,
such as Logistic regression (which we will discuss in the classification
section), Gamma regression, negative binomial regression etc.

We now present a third example of a regression problem with
a different flavor than the previous two examples. Consider the
BrainCancer data15 in the ISLR2 library. The data set contains sur- 15 Selingerov´a et al. (2016) Survival

of patients with primary brain tu-
mors: Comparison of two statistical
approaches. PLoS One, 11(2):e0148733.

vival times of patients diagnosed with brain cancer, and information
on a few other characteristics.16 A snapshot of data is shown below.

16 See ?BrainCancer for details.
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## # A tibble: 6 x 8

## sex diagnosis loc ki gtv stereo status time

## <fct> <fct> <fct> <int> <dbl> <fct> <int> <dbl>

## 1 Female Meningioma Infratentorial 90 6.11 SRS 0 57.6

## 2 Male HG glioma Supratentorial 90 19.4 SRT 1 8.98

## 3 Female Meningioma Infratentorial 70 7.95 SRS 0 26.5

## 4 Female LG glioma Supratentorial 80 7.61 SRT 1 47.8

## 5 Male HG glioma Supratentorial 90 5.06 SRT 1 6.3

## 6 Female Meningioma Supratentorial 80 4.82 SRS 0 52.8

Suppose we want to predict survival time (time) based on gross
tumor volume, in cubic centimeters (gtv). We need to notice another
variable of interest: Whether the patient is still alive at the end of
the study (status, 0=Yes, 1=No). A plot of time vs. gtv is shown in
Figure 6.
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Figure 6: Survival time vs gross tumor
size.

While it is tempting to use a simple linear regression in this case,
such a model in inappropriate here. Notice that only 53 out of 88

patients were still alive at the end of the study (cyan triangles in the
plot). We known the accurate survival times for the patients that
passed away. But for the patients that were alive, we can only know
that their survival time is at least as much as the observed data.

To be specific, for the i-th patient, let Ti be the actual survival time,
and Ci is the time when the patient left the study (if they were alive
after the study ended). Thus, we must have that Ci < Ti, if the patient
was alive after the study ended. Here, we are interested in modeling
Ti; instead we only observe

Yi = min(Ti, Ci).

for the i-th individual. This phenomenon is called censoring. The
status variable, which is an indicator of whether censoring has oc-
cured or not, can be defined as

δi =

{
0, if Ti > Ci

1, otherweise.

Thus our observed data are the pairs (Yi, δi), along with predictors,
for i = 1, . . . , n.

Such regression problems do not generally fall into the settings
discussed in the previous two examples due to the censoring of the
response, and requires different mathematical treatment. We will not
go into mathematical details yet - in future chapters, we will learn
how to perform regression with survival outcomes by using Cox’s
Proportional Hazards Model. Figure 7 shows a typical output from a
survival analysis in form of estimated survival probabilities.
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Figure 7: Survival probability for
different types of diagnosis.
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Classification problems

We call a supervised learning task a classification problem is the re-
sponse variable, Y is categorical. Predicting a categorical response
for an item/unit is called classifying that item/unit. The methods for
classification are often referred to as classifiers.

Let us consider the Default data in the ISLR2 package. The dataset17 17 This is a simulated data – see
?Default for more details.contains information on 10,000 customers about whether the cus-

tomer is a student, whether the customer defaulted on their debt,
along with their balance and income. A snpshot of the data is shown
below.

## # A tibble: 10,000 x 4

## default student balance income

## <fct> <fct> <dbl> <dbl>

## 1 No No 730. 44362.

## 2 No Yes 817. 12106.

## 3 No No 1074. 31767.

## 4 No No 529. 35704.

## 5 No No 786. 38463.

## 6 No Yes 920. 7492.

## 7 No No 826. 24905.

## 8 No Yes 809. 17600.

## 9 No No 1161. 37469.

## 10 No No 0 29275.

## # ... with 9,990 more rows

A few exploratory plots of the data are shown in Figure 8.
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Figure 8: Exploratory plots of the
defaults data.Our goal is to predict whether a customer will default based on

their data on the other three characteristics. From a inferential point
of view, we might want to know which variable is most associated
with default status. This is an example of a binomial classification prob-
lem, since there are two classes only. The goal of a classification prob-
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lem is to produce a rule that classifies new observations to existing
classes.

It is tempting to create a binary variable Y (taking the value 0 if
the customer does not default, and 1 if the customer does default),
pretending that Y is a numeric variable, and run a linear regression.
For simplicity, let us only consider balance to be the predictor.18 18 It seems customers with higher

balance tend to default more.Figure 9 shows the plot of default status vs balance, overlayed with
the fitted linear regression line (dashed line). We notice the predicted
values for lower values of balance are in fact negative! The linear
regression model does not take into account that the response is
binary, and thus are difficult to interpret.
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Figure 9: Linear (dashed line) and
logistic (solid line) regression fits to the
defaults data.

We will learn various classification techniques in this course. An
example of one such classifier is the logistic regression, which models
the probabilities of each class as a function of the predictors. Denot-
ing balance as X, the logistic regression posits the model

P(Y = 1|X) =
eβ0+Xβ1

1 + eβ0+Xβ1
.

The solid line in Figure 9 plots the estimated probabilities as a func-
tion of balance. Thus we can build a classification rule as

Classify a new observation Xnew to class 1 (Yes) if P̂(Y = 1|Xnew) > 0.5,
classify to 0 (“No”) otherwise.

Apart from logistic regression, we will learn many other classifiers,
such as, k-nearest neighbors, support vector machine, tree based
methods, and so on.

Classification is not limited only for two classes. The example dis-
cussed in Figure 1 is essentially a classification problem, but with
multiple classes (10 digits). Consider the MNIST image data19 avail- 19 See http://yann.lecun.com/exdb/

mnist/ for the documentation.able in the dslabs library. The data set contains image information of
handwritten numbers. The set contains 60, 000 images for traing and
10, 000 images for testing. Figure 10 shows a sample of 10 images in
the data set (in grayscale).

Figure 10: Example images form the
MNIST handwriting data.Our goal is to classify such images to their corresponding digits.

In this case, the response is categorical – the digits “0”, “1”, . . ., “9”.
Such problems are called multinomial classification problems as there
are multiple categories that the images need to be classified into.
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Unsupervised learning

In unsupervised learning, only the predictors X are present, but no
response Y is available. In other words, unsupervised learning takes
unlabeled data as input. The goal is often to find groups in the data.

Figure 11: Outline of unsupervised
statistical learning.

Unsupervised learning tasks can be mainly categorized into two
classes: clustering and dimension reduction. Although, there are other
tasks, such as outlier detection (anomaly detection), can also be con-
sidered as unsupervised learning.

Clustering

In clustering, we take unlabeled data, and try to group the units/indi-
viduals/observations into separate clusters based on the covariate data.

Cluster

A group of observations that are similar to each other but
different than the rest of the (groups of) observations.

Figure 12 demosntrates the basic idea behind clustering. Suppose
we have n observations and p features for each observation. We can
think of the data as a n× p matrix, where the features are contained
in columns, and observations are in rows. Clustering algorithms
group the observations (rows) into separate clusters based on their
similarity (measured using features).

Figure 12: The idea behind clustering.
The observations are grouped together
based on their similarity to each other.
All features are retained.

Notice that there are no pre-defined classes with labels in such
tasks. Thus the number of possible clusters (and what they represent)
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are also unknown, and has to be set/determined. Figure 13 shows a
simulated dataset with two features. The left plot shows the original
data which are unlabeled. After applying a clustering algorithm20, 20 In this case, we applied K-means

method, which we will learn later.the observations were clustered into two groups.
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Figure 13: Example of clustering. The
clustering algorithm takes unlabeld
data, and groups them into clusters. In
this example, the number of clusters is
set to 2.

As an practical example, let us consider the GvHD.control control
dataset in the mclust package.21 A snapshot of the data is shown 21 ?see ?GvHD for more details. Original

source is R. R. Brinkman, et al. (2007).
High-content flow cytometry and
temporal data analysis for defining a
cellular signature of Graft-versus-Host
Disease. Biology of Blood and Marrow
Transplantation, 13: 691-700.

below.

## # A tibble: 6,809 x 4

## CD4 CD8b CD3 CD8

## <dbl> <dbl> <dbl> <dbl>

## 1 199 420 132 226

## 2 294 311 241 164

## 3 85 79 14 218

## 4 19 1 141 130

## 5 35 29 6 135

## 6 376 346 138 176

## 7 97 329 527 406

## 8 200 342 145 189

## 9 422 433 163 47

## 10 391 390 147 190

## # ... with 6,799 more rows

The dataset represents Graft-versus-Host Disease (GvHD) data. We
are only looking at GvHD positive patients. This sample has four
biomarkers (CD4, CD8b, CD3, and CD8). The goal is to find whether
there are any sub-populations present in the sample. Figure 14, left
panel, shows a pairs-plot along with bivariate and univariate densi-
ties of the four biomarkers.

After running a clustering algorithm, we might find three clus-
ters, as shown in the right panel in Figure 14. The choice of number
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Figure 14: Pairs plot for the GvHD data.
The left panel shows the original data.
The right panel shows the results of
clustering. The colors (red, blue and
orange) indicate three different clusters.
Box plots and histograms show how the
values of the continuous variables vary
between clusters.

of clusters can be done by maximizing various measures of model
performance. However, in many situations, number of clusters are
chosen based on the interpretation of the resulting clusters. For exam-
ple, from the clusering results above, we can see the following:

• The blue cluster has the highest number of patients in it. It seems
that, generally, patients in this cluster tend to have smaller values
of the four bimarkers compared to the other two clusters.

• In contrast, the orange cluster contains patients having higher CD8
levels compared to others.

As such we can not know what these patterns mean based only on
the numeric results – we require expert knowledge to understand the
biological impact of such patterns.

Dimension reduction

The goal of dimension reduction methods is to transform a large
number of variables into a set of smaller number of variable. Often,
dealing with a large number of predictors can be problem due to
various reasons:

• Difficulty in visualizing the data.

• Smaller sample size compared to number of predictors (p >> n
problem), curse of dimensionality.

• Collinearity among the variables.

By transforming the original variables into a smaller number of new
features allows us to bypass some or all of the above mentioned
difficulties.
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Figure 15: The idea behind dimension
reduction. The original features are
collaped together to form fewer number
of new features. All observations are
retained.

Figure 15 presents the main idea of dimension reduction. Suppose
we have n observations and p features for each observation. We can
think of the data as a n× p matrix, where the features are contained
in columns, and observations are in rows. Let us denote the features
by X1, . . . , Xp. Dimension reduction methods collapse the columns
to create new features, Z1, . . . , Ziq. Ideally, we would have q < p.
For example, a popular dimension reduction technique is Principal
Component Analysis (PCA), which creates new features as linear
combination of the original features:

Z1 = a1X1 + . . . + apXp,

Z2 = b1X1 + . . . + bpXp,

and so on, where a1, . . . , ap, and b1, . . . , bp, and so on, are estimated
from the data so that the new features capture most of the variation
in the observed data. Other methods might use nonlinear transfor-
mations as well.

Take for example the banknote data in the mclust package.22 The 22 See ?banknote for details.

data contains six measurements made on 100 genuine and 100 coun-
terfeit old-Swiss 1000-franc bank notes. A snapshot of the data is
shown below.23 23 We have omitted the Staus variable

which tells us whether a note is gen-
uine or counterfeit. This is because
unsupervised learning does not require
a target/outcome variable.

## # A tibble: 200 x 6

## Length Left Right Bottom Top Diagonal

## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

## 1 215. 131 131. 9 9.7 141

## 2 215. 130. 130. 8.1 9.5 142.

## 3 215. 130. 130. 8.7 9.6 142.

## 4 215. 130. 130. 7.5 10.4 142

## 5 215 130. 130. 10.4 7.7 142.

## 6 216. 131. 130. 9 10.1 141.

## 7 216. 130. 130. 7.9 9.6 142.

## 8 214. 130. 129. 7.2 10.7 142.

## 9 215. 129. 130. 8.2 11 142.

## 10 215. 130. 130. 9.2 10 141.

## # ... with 190 more rows
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A pairs plot of the data set is shown in Figure 16, left panel. After
performing PCA, we can find two new features, engineered from the
original six features, that capture roughly 88% of the total variation
(defined as the sum of variances of the variable present in the data)
of the data. A plot of these new features in shown in the right panel
in Figure 16.

Figure 16: Pairs plot of the variables in
the banknotes data (left panel) and new
features obtained via pca (right panel).We have effectively mapped the six variables in the dataset into two

new features, and thus reduced the dimension by 4. Each observation
(a six dimensional vector) is mapped to a two dimensional point in
the new plot, this making visualization much easier.

Semi-supervised learning

These type of tasks fall between supervised and unsupervised prob-
lem. They learn from both labeled data (both X and Y are present)
and unlabeled data (only X present). Typically, the amount of unla-
beled data far exceed the amount of labeled data in such problems.

Figure 17: Outline of semi-supervised
statistical learning.

Semi-supervised learning arises from the idea that, often, label-
ing data is resource intensive24 while unlabeled data are cheaper to 24 For example, examining a CAT scan

image and determining whether there
is an anomaly requires time consuming,
expensive and sometimes error prone
effort from experts. For large data sets,
such tasks might well be infeasible.

obtain. Semi-supervised learning proceeds by first building a model
based only on the labeled data, and then predicting the labels (Y) for
the unlabeled data. Finally, a new model is trained with all the data
combined with the predicted labels.
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Application of semi-supervised learning include speech analysis,
text document classification, web-content classification, among many
others. Due to time constraint, we will not cover this type of machine
learning methods in this course.

Machine learning with R

R is a freely available language for statistical computing and visual-
ization. For this course, please install R (this is required) and the IDE
R Studio:

• R: https://cran.r-project.org/

• R Studio: https://www.rstudio.com/

While R studio is not required, it is highly recommended as it will
make R programming and managing R projects much easier than just
using base R.

Resources

We will use various R packages in this course such as caret, h2o,
mlr3, among others. See https://cran.r-project.org/web/views/

MachineLearning.html for a (large) list of machine learning and sta-
tistical learning packages available in R. Keep in mind this list is not
comprehensive, and there may be other packages out there. If you
want to utilize Python’s machine learning libraries from, you can use
the reticulate package to call python from R.

Communication

While writing project reports and homework in usual word proces-
sors is acceptable, I would highly encourage you to learn and use R

markdown for this purpose. See https://rmarkdown.rstudio.com/ for
the capabilities of R markdown.
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